

# Accumulatori a membrana

#### RI 50150

Edizione: 2018-07 Sostituisce: 01.2013

# Tipo HAD



# ( (

Volume nominale 0,075 ... 3,5 litri

Serie 1X e 2X

## Caratteristiche

- ► Accumulatori idropneumatici per l'utilizzo in macchine da lavoro mobili e in macchine ed impianti fissi
- ▶ Uso:
  - accumulo di energia in impianti a funzionamento intermittente.
  - riserva di energia per casi di emergenza
  - smorzamento urti e vibrazioni
  - compensazione del volume in caso di variazioni di pressione e temperatura.
- ▶ Omologazione:
  - conforme alla DAP 2014/68/EU
  - conforme alla TR CU 032/2013

## **Indice**

| 1     |
|-------|
| 2, 3  |
| 4     |
| 5     |
| 6     |
| 6, 7  |
| 8, 9  |
| 10 13 |
| 14 17 |
| 18    |
| 19    |
|       |

# Codici di ordinazione

| 01    | 02 03 04                                         | 05                 | 06   | 07   | 08  | 09  | 10         | ) 11 | 12  | 1   | 3   | 14  |          |
|-------|--------------------------------------------------|--------------------|------|------|-----|-----|------------|------|-----|-----|-----|-----|----------|
| HA    | D   -   -  /                                     | <u> </u>           |      |      |     |     | 1          | . 1  | 1   | -   |     |     |          |
|       |                                                  |                    |      |      |     |     |            |      |     |     |     |     |          |
| 01    | Accumulatori a membrana                          |                    |      |      |     |     |            |      |     |     |     |     | HAD      |
| /olur | me nominale                                      |                    |      |      |     |     |            |      |     |     |     |     |          |
| 02    |                                                  | 0,075              | 0,16 | 0,35 | 0,5 | 0,6 | 0,7        | 1,0  | 1,4 | 2,0 | 2,8 | 3,5 |          |
| Droce | sione d'esercizio massima                        |                    |      | •    |     |     |            |      | •   |     |     |     | -        |
| 03    | 70 bar                                           |                    |      |      |     |     |            |      |     |     | 0   |     | 70       |
| 00    | 100 bar                                          |                    |      |      |     |     | 0          |      |     | 0   |     |     | 100      |
|       | 140 bar                                          |                    |      |      |     |     |            |      | 0   |     |     |     | 140      |
|       | 160 bar                                          |                    |      | 0    | 0   |     |            |      |     |     |     |     | 160      |
|       | 180 bar                                          |                    |      | 1 0  | 0   |     | Ιο         |      |     |     |     |     | 180      |
|       | 200 bar                                          |                    |      |      |     |     |            | 0    |     |     |     |     | 200      |
|       | 210 bar                                          |                    |      | 0    |     |     | 0          |      |     |     |     |     | 210      |
|       | 250 bar                                          | •                  | •    | •    | •   |     | •          | •    | •   | •   | •   | •   | 250      |
|       | 330 bar                                          |                    |      |      |     | •   |            |      |     | 1   |     | 1   | 330      |
|       | 350 bar                                          |                    |      |      |     |     | 0          |      | 0   | 0   | 0   | 0   | 350      |
|       |                                                  |                    |      |      |     |     |            |      |     | 1   |     | 1   |          |
| Serie |                                                  |                    | 1    | 1    | 1   | I   |            |      |     | 1   | 1   | 1   |          |
| 04    | Serie 10 19<br>(solo per queste combinazioni dei |                    |      | 160  |     |     | 100<br>180 | 200  | 140 | 100 | 70  |     |          |
|       | volumi nominali di pressione                     | 250                | 250  | 210  | 160 | 330 | 210        | 250  | 250 | 250 | 350 | 350 | 1X       |
|       | ·                                                |                    |      | 250  |     |     | 250        |      |     |     |     |     |          |
|       | Serie 20 29                                      |                    |      |      |     |     |            |      |     |     |     |     |          |
|       | (solo per queste combinazioni dei                |                    |      |      | 250 |     | 350        |      | 350 | 350 | 250 | 250 | 2X       |
|       | volumi nominali di pressione                     |                    |      |      |     |     |            |      |     |     |     |     |          |
| Press | sione di precarico                               |                    |      |      |     |     |            |      |     |     |     |     |          |
| 05    | 0 bar                                            | •                  | •    | •    | •   | •   | •          | •    | •   | •   | •   | •   | 0        |
|       | 1 250 bar                                        | 0                  | 0    | 0    | О   | 0   | О          | 0    | 0   | 0   | 0   | 0   | 1 25     |
| Gran  | dezza di collegamento per fluido idra            | ulico 1)           |      |      |     |     |            |      |     |     |     |     |          |
| 06    | M14x1,5                                          | 0                  |      |      |     |     |            |      |     |     |     |     | Z04      |
|       | M18x1,5                                          |                    | 0    | T 0  | 0   |     | 0          |      | 0   |     |     |     | Z06      |
|       | M22x1,5                                          |                    |      | 1 -  |     |     |            | 0    | 0   | 0   | 0   |     | Z08      |
|       | G1/2                                             | •                  | •    | •    | •   | •   | •          | •    | •   | 0   | 0   |     | G04      |
|       | G3/4                                             |                    |      |      |     |     |            |      |     | •   | •   | •   | G05      |
|       |                                                  |                    |      |      |     |     |            |      |     |     |     |     |          |
|       | di fissaggio (forma di collegamento ol           | lio) <sup>1)</sup> |      |      | 1   |     | 1          |      |     |     |     |     |          |
| 07    | Alloggiamento filettato                          |                    |      | 0    | 0   |     | 0          |      | 1   |     |     |     | Α        |
|       | Alloggiamento filettato con esagono esterno      | •                  | •    | •    | •   | •   | •          | •    | •   | •   | •   | •   | С        |
|       |                                                  |                    |      |      |     |     |            |      |     |     |     |     | F        |
|       | Tappo a vite                                     | 0                  | 0    |      |     |     |            |      |     |     |     |     | <u> </u> |
|       |                                                  | 0                  | 0    |      |     |     | 0          | 0    | 0   |     |     |     | E        |

<sup>0</sup> 

Prodotti preferenziali Prodotti di spedizione Su richiesta 1) Ulteriori collegamenti su richiesta

# Codici di ordinazione

| 02                |                                                                                                                  |                                                                          | 0,075 | 0,16 | 0,35 | 0,5 | 0,6 | 0,7 | 1,0 | 1,4 | 2,0 | 2,8 | 3,5 |                         |
|-------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-------------------------|
| Form              | na di collegamento ga                                                                                            | s <sup>1)</sup>                                                          |       |      |      |     |     |     |     |     |     |     |     |                         |
| 08                | Standard                                                                                                         |                                                                          | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | 1                       |
|                   | Non riempibile, sald                                                                                             | ato lato gas                                                             | 0     |      |      |     |     |     |     |     |     |     |     | 4                       |
| Mate              | eriale della membrana                                                                                            | l                                                                        |       |      |      |     |     |     |     |     |     |     |     |                         |
| 09                | NBR                                                                                                              |                                                                          | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | N                       |
|                   | ECO                                                                                                              |                                                                          |       | 0    | 0    | 0   |     | 0   | 0   | 0   |     | 0   | 0   | E                       |
| Mate              | eriale del serbatoio                                                                                             |                                                                          |       |      |      |     |     |     |     |     |     |     |     |                         |
| 10                | Acciaio                                                                                                          |                                                                          | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | 1                       |
| Suna              | erficie del lato interno                                                                                         | dal carbataia                                                            |       |      | •    |     |     |     | •   |     | ,   |     |     |                         |
| 11                | Acciaio                                                                                                          | dei serbatolo                                                            | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | 1                       |
| 11                | Acciaio                                                                                                          |                                                                          |       | _    |      |     |     |     |     | _   | _   | _   |     | 1 -                     |
|                   |                                                                                                                  |                                                                          |       |      |      |     |     |     |     |     |     |     |     |                         |
| Supe              | erficie del lato del coll                                                                                        | egamento                                                                 |       |      |      |     |     |     |     |     |     |     |     |                         |
| <b>Supe</b><br>12 | erficie del lato del col                                                                                         | egamento                                                                 | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | 1                       |
| 12                | 1                                                                                                                |                                                                          | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | 1                       |
| 12                | Acciaio                                                                                                          |                                                                          | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | 1<br>BA                 |
| 12<br>Cert        | Acciaio  ificazione (collaudo) <sup>2</sup>                                                                      | )                                                                        |       |      |      |     |     |     |     | •   | •   | •   | •   | BA                      |
| 12<br>Cert        | Acciaio  ificazione (collaudo) <sup>2</sup> Manuale d'uso  DAP 2014/68/EU  Manuale d'uso e                       | UE UE UE + Unione                                                        |       |      |      |     |     |     |     |     |     |     |     | BA CE                   |
| 12<br>Cert        | Acciaio  ificazione (collaudo) <sup>2</sup> Manuale d'uso  DAP 2014/68/EU                                        | UE UE UE + Unione Economica Eu-                                          |       |      |      |     |     |     |     |     |     |     |     | BA CE                   |
| 12<br>Cert        | Acciaio  ificazione (collaudo) 2  Manuale d'uso  DAP 2014/68/EU  Manuale d'uso e  TR CU 032/2013                 | UE UE UE + Unione Economica Euroasiatica                                 | •     | •    | •    | •   | •   | •   | •   |     |     |     |     | BA<br>CE<br>BA          |
| 12<br>Cert        | Acciaio  ificazione (collaudo) <sup>2</sup> Manuale d'uso  DAP 2014/68/EU  Manuale d'uso e                       | UE UE UE + Unione Economica Eu-                                          | •     | •    | •    | •   | •   | •   | •   |     |     |     |     | BA-<br>CE<br>BA-<br>EAG |
| 12<br>Cert        | Acciaio  ificazione (collaudo) 2  Manuale d'uso  DAP 2014/68/EU  Manuale d'uso e  TR CU 032/2013                 | UE UE UE + Unione Economica Euroasiatica UE + Unione                     | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | BA-<br>CE<br>BA-<br>EAG |
| 12<br>Cert<br>13  | Acciaio  ificazione (collaudo) 2  Manuale d'uso  DAP 2014/68/EU  Manuale d'uso e  TR CU 032/2013  TR CU 032/2013 | UE UE + Unione Economica Euroasiatica UE + Unione Economica Euroasiatica | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | BA<br>CE<br>BA<br>EAG   |
| 12<br>Cert<br>13  | Acciaio  ificazione (collaudo) 2  Manuale d'uso  DAP 2014/68/EU  Manuale d'uso e  TR CU 032/2013                 | UE UE + Unione Economica Euroasiatica UE + Unione Economica Euroasiatica | •     | •    | •    | •   | •   | •   | •   | •   | •   | •   | •   | BA<br>CI<br>BA<br>EA    |

<sup>1)</sup> Ulteriori collegamenti su richiesta

Prodotti preferenziali Prodotti di spedizione Su richiesta

<sup>2)</sup> Altra certificazione su richiesta

#### Funzionamento, sezione

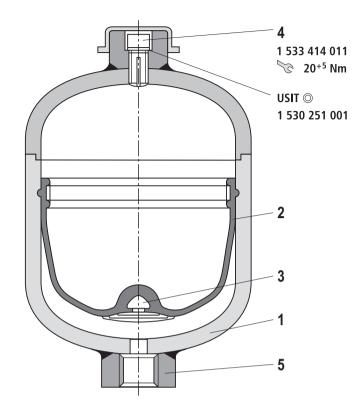
#### Dati generali

Uno dei compiti principali degli accumulatori idropneumatici è ad es. assorbire determinati volumi di fluido sotto pressione di un impianto idropneumatico e restituirli all'impianto se necessario.

Poiché il fluido è sotto pressione, gli accumulatori idropneumatici vengono trattati come recipienti in pressione

e devono essere progettati per la sovrappressione d'esercizio massima in considerazione dello standard dell'ente certificatore nel paese d'installazione.

Nella maggior parte degli impianti idropneumatici vengono utilizzati accumulatori idropneumatici (alimentati a gas) con elemento divisore.


In base alla forma dell'elemento divisore, si differenzia tra accumulatori a sacca, a pistone e a membrana. Gli accumulatori idropneumatici sono costituiti principalmente da una parte di fluido e una parte di gas con un elemento divisore a tenuta di gas. La camera lato fluido

è collegata al circuito idraulico. All'aumento della pressione il gas viene compresso e il fluido viene assorbito nell'accumulatore idropneumatico. Al calo della pressione il gas compresso si espande e spinge il fluido accumulato nel circuito idraulico.

#### Accumulatori a membrana

L'accumulatore a membrana comprende un serbatoio in acciaio resistente alla pressione (1) in esecuzione per lo più sferica o cilindrica. All'interno dell'accumulatore si trova come elemento divisore una membrana (2) realizzata in un materiale elastico e flessibile (elastomero) con pulsante di chiusura (3) e tappo filettato (4). L'accumulatore

è conforme alla direttiva sugli apparecchi a pressione 2014/68/UE.



- 1 Serbatoio
- 2 Membrana
- 3 Pulsante di chiusura
- Tappo filettato (vite di riempimento del gas)
- 5 Collegamento del fluido



# Dati tecnici

Generale

(in caso di impiego dell'apparecchio con valori diversi da quanto indicato, interpellateci!)

| Massa k                                                               | g    | Vedere t | abella a p  | oagina 11  | , 17, 18   |              |              |            |            |      |     |     |
|-----------------------------------------------------------------------|------|----------|-------------|------------|------------|--------------|--------------|------------|------------|------|-----|-----|
| Tipologia costruttiva                                                 |      | Accumu   | latore a n  | nembrana   | , saldato  |              |              |            |            |      |     |     |
| Posizione di installazione                                            |      | A piacer | e, preferi  | bilmente   | con il rad | cordo di     | collegame    | ento fluic | do in bass | 0    |     |     |
| Tipo di fissaggio                                                     |      | Con fasc | ette elas   | tiche opp  | ure med    | iante racc   | ordo filet   | tato       |            |      |     |     |
| Intervallo di temperatura ambiente °                                  | С    | Da -15 a | a +65       |            |            |              |              |            |            |      |     |     |
| Raccordo della tubazione                                              |      | Estremit | à filettata | <br>a      |            |              |              |            |            |      |     |     |
| Superficie                                                            |      | Vernicia | to, colore  | nero bril  | lante      |              |              |            |            |      |     |     |
|                                                                       |      |          |             |            |            |              |              |            |            |      |     |     |
| Dati idraulici                                                        |      |          |             |            |            |              |              |            |            |      |     |     |
| Volume nominale                                                       | - 1  | 0,075    | 0,16        | 0,35       | 0,5        | 0,6          | 0,7          | 1,0        | 1,4        | 2,0  | 2,8 | 3,5 |
| Volume del gas effettivo                                              | I    | 0,075    | 0,16        | 0,32       | 0,48       | 0,6          | 0,75         | 1,0        | 1,4        | 1,95 | 2,7 | 3,5 |
| Massima portata consentita //                                         | min' | 1        | 0           |            |            | 4            | 10           |            |            | 6    | 0   | 60  |
| Pressione d'esercizio massima                                         | bar  |          |             |            |            |              |              |            |            |      | 70  |     |
| consentita p                                                          |      |          |             |            |            |              | 100          |            |            | 100  |     |     |
|                                                                       |      |          |             |            |            |              |              |            | 140        |      |     |     |
|                                                                       |      |          |             | 160        | 160        |              |              |            | •          |      |     |     |
|                                                                       |      |          |             |            |            |              | 180          |            |            |      |     |     |
|                                                                       |      |          |             |            |            |              |              | 200        |            |      |     |     |
|                                                                       |      |          |             | 210        |            |              | 210          |            |            |      |     |     |
|                                                                       |      | 250      | 250         | 250        | 250        |              | 250          | 250        | 250        | 250  | 250 | 250 |
|                                                                       |      |          |             |            |            | 330          |              |            |            |      |     |     |
|                                                                       |      |          |             |            |            |              | 350          |            | 350        | 350  | 350 | 350 |
| Range di oscillazione della pres-                                     | bar  |          |             |            |            |              |              |            |            |      | 50  |     |
| sione massima consentito $\Delta p$ dinamico                          |      |          |             |            |            |              | 50           |            |            | 65   |     |     |
| aa.                                                                   |      |          |             |            |            |              |              |            | 80         |      |     |     |
|                                                                       |      |          |             | 90         | 90         |              |              |            | 1 00       |      |     |     |
|                                                                       |      |          |             |            |            |              | 93           |            |            |      |     |     |
|                                                                       |      |          |             |            |            |              |              | 115        |            |      |     |     |
|                                                                       |      |          |             | 120        |            |              | 93           |            |            |      |     |     |
|                                                                       |      | 140      | 140         | 120        | 90         |              | 140          | 140        | 140        | 140  | 140 | 140 |
|                                                                       |      |          |             | 120        |            | 140          | 2.0          |            | 1 2.0      | 2.0  |     |     |
|                                                                       |      |          |             |            |            | 110          | 140          |            | 140        | 140  | 140 | 140 |
| Pressioni di esercizio e volume utile                                 |      | Vedere o | calcolo da  | a pagina 5 | i a 10     |              | 2.0          |            | 1          | 1.0  |     |     |
| Fluido idraulico                                                      |      |          |             |            |            | 4: altri flu | ıidi su ricl | niesta     |            |      |     |     |
| Campo di temperatura del fluido                                       |      |          | a +80 (NE   |            |            | .,           |              |            |            |      |     |     |
| idraulico °C (altri su richiesta)                                     |      |          | a +80 (EC   |            |            |              |              |            |            |      |     |     |
| Dati pneumatici                                                       |      |          |             |            |            |              |              |            |            |      |     |     |
| Gas di riempimento                                                    |      | Solo azo | to, utilizz | are class  | e di pure  | zza minim    | na 4.0, N2   | = 99.99    | vol%!      |      |     |     |
| Pressione di riempimento del gas p0 (a temperatura ambiente di 20 °C) |      | Vedere t | ipi prefer  | iti da pag | gina 12 a  | 18           |              |            |            |      |     |     |

# Fluidi idraulici utilizzabili:

| Fluido idraulico | Materiale         |
|------------------|-------------------|
| Oli minerali     | NBR 1)            |
|                  | ECO <sup>2)</sup> |
| HFC              | NBR 1)            |

- 1) Gomma acrilonitrile-butadiene
- 2) Gomma epicloridrina

#### Applicazione, principio di funzionamento

#### **Applicazioni**

Gli accumulatori idropneumatici offrono una serie di possibilità di applicazione:

- Accumulo di energia per il risparmio della potenza motrice di pompe in impianti a funzionamento intermittente.
- ► Riserva di energia in casi di emergenza, ad esempio in caso di guasto della pompa idraulica.
- ► Compensazione delle perdite.
- ► Smorzamento di urti e vibrazioni in caso di vibrazioni periodiche.
- ► Compensazione del volume in caso di variazioni di pressione e temperatura.
- ▶ Elemento di sospensione in veicoli.
- ▶ Assorbimento urti in caso di urti meccanici.

# Principio di funzionamento

I fluidi sono praticamente incomprimibili e non sono quindi in grado di accumulare energia di pressione. Negli accumulatori idropneumatici è utilizzata la compressibilità di un gas per l'accumulo del fluido. L'azoto utilizzato dev'essere pari almeno alla classe di purezza 4.0:  $N_2$  99,99 % vol.









# Calcolo

#### Pressioni

Per il calcolo relativo a un accumulatore le seguenti pressioni sono rispettivamente rilevanti:

p<sub>0</sub> = Pressione di precarico del gas
 In caso di temperatura ambiente e zona del fluido svuotata

p<sub>OT</sub> = Pressione di precarico del gas
 In caso di temperatura d'esercizio

 p<sub>1</sub> = Sovrappressione d'esercizio minima
 p<sub>2</sub> = Sovrappressione d'esercizio massima

t<sub>max</sub> = Temperatura d'esercizio massima

Per uno sfruttamento ottimale del volume dell'accumulatore e per ottenere una lunga durata utile, si consiglia di attenersi ai seguenti valori:

$$p_0, t_{\text{max}} \approx 0.9 p_1$$
 (1)

La massima pressione idraulica non deve superare di quattro volte la pressione di precarica, perché, altrimenti, l'elasticità della membrana subirebbe una sollecitazione eccessiva con variazione di compressione troppo alta e conseguente riscaldamento del gas.

La durata utile della membrana è tanto maggiore quanto minore è la differenza tra  $p_1$  e  $p_2$ . Tuttavia, si riduce anche in base al grado di utilizzo della capacità accumulatore massima.

Accumulatori a membrana

 $p_2 \le 4 \cdot p_0 \tag{2}$ 

Su richiesta

 $p_2 \le 8 \cdot p_0$ 



Per raggiungere rapporti di pressione maggiori  $(p_0: p_2 > 1: 4)$  nell'accumulatore, è possibile inserire un elemento di riempimento sul lato gas dell'accumulatore.

In questo modo si riduce il volume del gas utilizzabile  $V_1$ , ma la membrana viene protetta da una deformazione non consentita.

## Calcolo

#### Volume dell'olio

In base alle pressioni  $p_0 \dots p_2$  si ottengono i volumi gas  $V_0 \dots V_2$ .

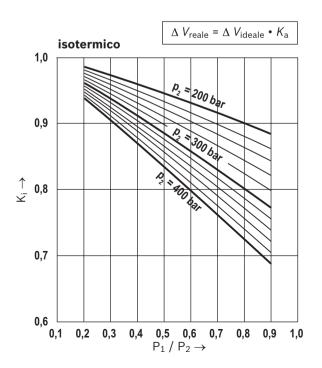
In questo caso  $V_0$  è anche il volume nominale dell'accumulatore.

Il volume dell'olio disponibile  $\Delta V$  corrisponde alla differenza tra i volumi gas  $V_1$  e  $V_2$ :

$$\Delta V \le V_1 - V_2 \tag{3}$$

Il volume del gas variabile all'interno di una pressione differenziale si ottiene tramite le seguenti equazioni:

▶ In una trasformazione isotermica dei gas, in cui la variazione della riserva di gas avviene così lentamente da garantire un tempo sufficiente per lo scambio di calore completo tra l'azoto e l'ambiente circostante, con una temperatura che rimane quindi costante, vale quanto segue:


$$p_0 \cdot V_0 = p_1 \cdot V_1 = p_2 \cdot V_2$$
 (4.1)

#### Diagramma di calcolo

Per la rappresentazione grafica sono utilizzate le formule (4.1) e (4.2) nei diagrammi a pagina 9 e 10. A seconda della specifica tecnica è possibile individuare il volume dell'olio disponibile, le dimensioni dell'accumulatore o le pressioni.

#### Fattore di correzione $K_i$ e $K_a$

L'equazione (4.1) o (4.2) vale solo per gas ideali. Con i gas reali le pressioni d'esercizio superiori a 200 bar presentano tuttavia differenze notevoli, che devono essere considerate tramite fattori di correzione. Questi si possono desumere dai seguenti diagrammi. I fattori di correzione, con i quali moltiplicare il volume di prelievo ideale  $\Delta V$  si trovano nel range compreso tra 0,6 ... 1.

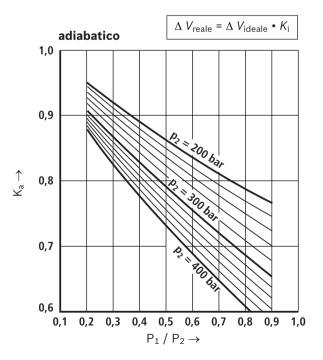


► In una **trasformazione adiabatica**, quindi con una rapida variazione della riserva di gas, in cui vi è anche una variazione della temperatura dell'azoto, vale quanto segue:

$$p_0 \cdot V \chi_0 = p_1 \cdot V \chi_1 = p_2 \cdot V \chi_2$$
 (4.2)

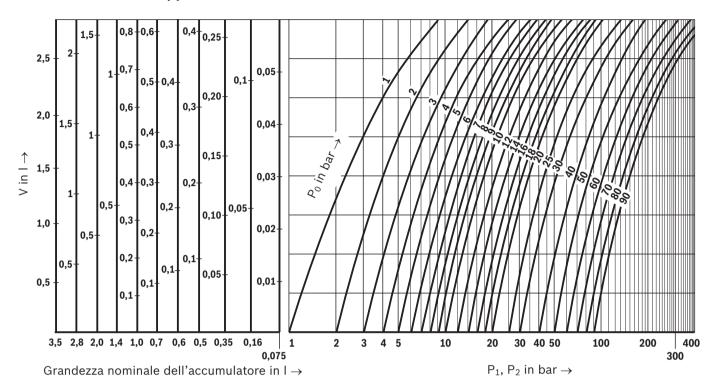
 α rapporto dei calori specifici del gas (esponente adiabatico), per l'azoto = 1,4

Nella pratica le trasformazioni avvengono più facilmente in base alle leggi adiabatiche. Spesso si ha carica isotermica e scaricamento in adiabatica.

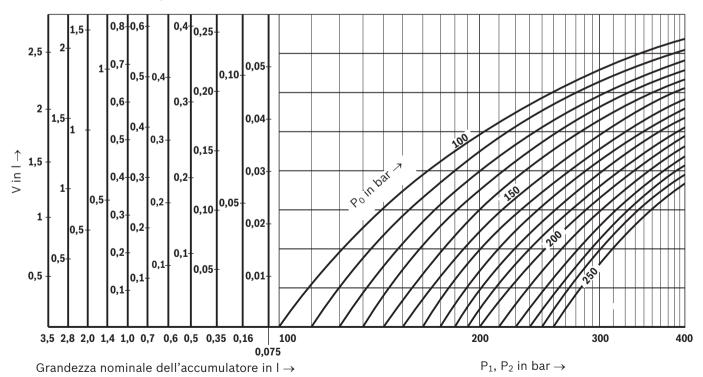

Considerando le equazioni (1) e (2)  $\Delta V$  corrisponde ad un valore compreso tra il 50% e il 70% del volume nominale dell'accumulatore. Come punto di riferimento si considera:

$$V_0 = 1,5 \dots 3 \times \Delta V$$
 (5)

#### Utilizzo dei diagrammi di calcolo

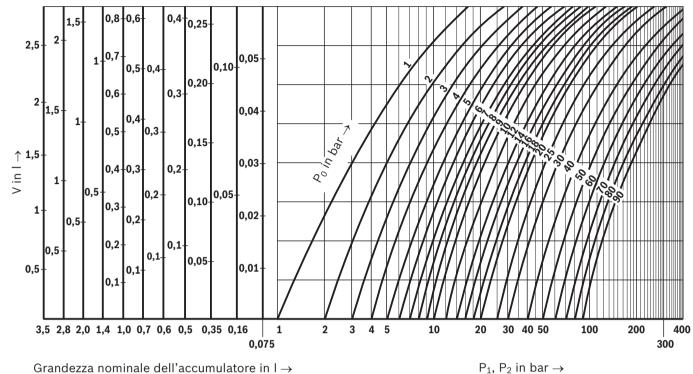

Volume di olio disponibile  $V_2$   $V_1$   $V_1$   $V_2$   $V_1$   $V_2$   $V_3$   $V_4$   $V_1$   $V_1$   $V_2$   $V_3$   $V_4$   $V_1$   $V_1$   $V_2$   $V_3$   $V_4$   $V_4$  V

Range della pressione di lavoro

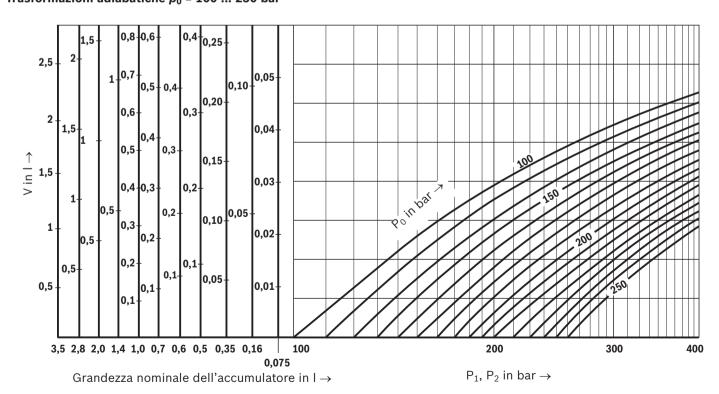



#### **Curve caratteristiche**

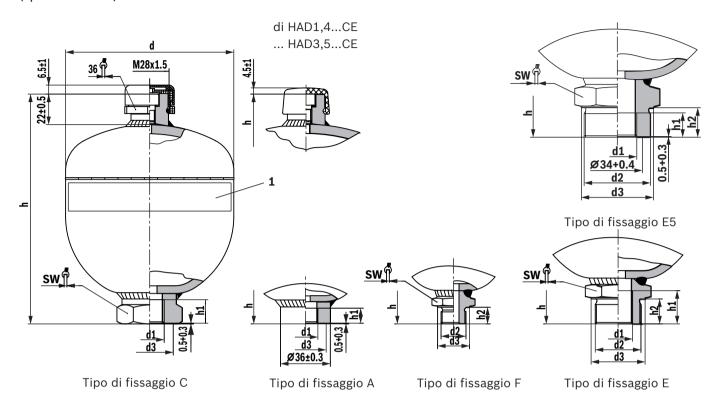
# Trasformazioni isotermiche $p_0 = 1 \dots 90$ bar




# Trasformazioni isotermiche $p_0$ = 100 ... 250 bar




# **Curve caratteristiche**


# Trasformazioni adiabatiche $p_0 = 1 \dots 90$ bar

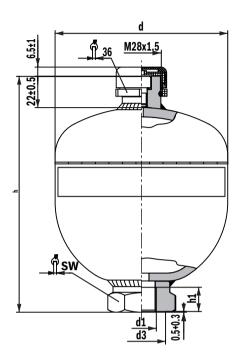


# Trasformazioni adiabatiche $p_0$ = 100 ... 250 bar



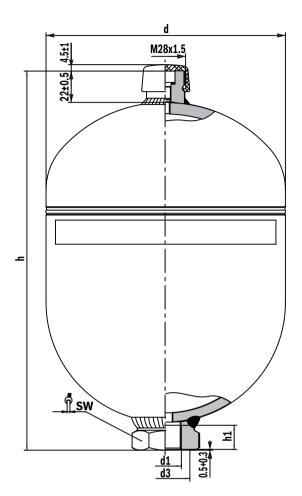
# **Dimensioni:** Panoramica generale (quote in mm)




#### 1 Etichetta

| Volume/pressione/<br>serie | Grandezza attacco | Tipo di<br>fissaggio | h         | h1      | h2     | d          | d1      | d2      | d3      | SW | Peso<br>[kg] |
|----------------------------|-------------------|----------------------|-----------|---------|--------|------------|---------|---------|---------|----|--------------|
| 0.075.050.1V               | G04               | С                    | 110,5±1,5 | 14 min. | -      | Ø64+0,3    | G1/2    | -       | Ø29+0,4 | 32 | ~0,9         |
| 0,075-250-1X               | Z04               | F                    | 112±1,5   | -       | 12±0,2 | Ø64+0,3    | -       | M14x1,5 | Ø19±0,2 | 19 | ~0,7         |
| 0.10.250.17                | G04               | С                    | 119±1,5   | 14 min. | -      | Ø75+0,3    | G1/2    | -       | Ø29+0,4 | 32 | ~0,9         |
| 0,16-250-1X                | Z06               | F                    | 123±1,5   | -       | 12±0,2 | Ø75+0,3    | -       | M18x1,5 | Ø23±0,2 | 27 | ~0,9         |
| 0.2F 160.1V                | Z06               | Α                    | 130±1,5   | 14 min. | -      | Ø92,5+0,3  | M18x1,5 | -       | Ø30+0,4 | -  | ~1,3         |
| 0,35-160-1X                | G04               | Α                    | 130±1,5   | 14 min. | -      | Ø92,5+0,3  | G1/2    | -       | Ø34+0,4 | -  | ~1,3         |
| 0.2F.210.1V                | Z06               | С                    | 136±1,5   | 14 min. | -      | Ø92,5+0,3  | M18x1,5 | -       | Ø30+0,4 | 41 | ~1,4         |
| 0,35-210-1X                | G04               | С                    | 136±1,5   | 17 min. | -      | Ø92,5+0,3  | G1/2    | -       | Ø34+0,4 | 41 | ~1,4         |
| 0,35-250-1X                | G04               | С                    | 141±1,5   | 17 min. | -      | Ø95+0,3    | G1/2    | -       | Ø34+0,4 | 41 | ~1,7         |
|                            | Z06               | С                    | 149±1,5   | 14 min. | -      | Ø103+0,3   | M18x1,5 | -       | Ø30+0,4 | 41 | ~1,6         |
| 0,5-160-1X                 | Z06               | Α                    | 143±1,5   | 14 min. | -      | Ø103+0,3   | M18x1,5 | -       | Ø30+0,4 | -  | ~1,5         |
|                            | G04               | Α                    | 143±1,5   | 14 min. | -      | Ø103+0,3   | G1/2    | -       | Ø34+0,4 | -  | ~1,6         |
| 0.5.050.07                 | Z06               | С                    | 151±1,5   | 14 min. | -      | Ø106,7+0,3 | M18x1,5 | -       | Ø30+0,4 | 41 | ~2,1         |
| 0,5-250-2X                 | G04               | С                    | 151±1,5   | 17 min. | -      | Ø106,7+0,3 | G1/2    | -       | Ø34+0,4 | 41 | ~2,1         |
| 0,6-330-1X                 | G04               | С                    | 170±1,5   | 17 min. | -      | Ø110+0,3   | G1/2    | -       | Ø34+0,4 | -  | ~2,9         |

# **Dimensioni:** Panoramica generale (quote in mm)


| Volume/pressione/<br>serie | Grandezza attacco | Tipo di<br>fissaggio | h                  | h1      | h2     | d          | d1      | d2        | d3      | sw | Peso<br>[kg] |
|----------------------------|-------------------|----------------------|--------------------|---------|--------|------------|---------|-----------|---------|----|--------------|
| 0.7.100.17                 | G04               | С                    | 161±1,5            | 14 min. | -      | Ø117+0,3   | G1/2    | -         | Ø34+0,4 | 41 | ~1,7         |
| 0,7-100-1X                 | G04               | E                    | 172±1,5            | 24 min. | 18±0,2 | Ø117+0,3   | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~2,0         |
|                            | G04               | С                    | 166±1,5            | 17 min. | -      | Ø121,5+0,3 | G1/2    | -         | Ø34+0,4 | 41 | ~2,6         |
|                            | Z06               | С                    | 166±1,5            | 14 min. | -      | Ø121,5+0,3 | M18x1,5 | -         | Ø30+0,4 | 41 | ~3,0         |
| 0,7-180-1X                 | Z06               | Α                    | 160±1,5            | 14 min. | -      | Ø121,5+0,3 | M18x1,5 | -         | Ø30+0,4 | -  | ~2,6         |
|                            | G04               | Α                    | 160±1,5            | 14 min. | -      | Ø121,5+0,3 | G1/2    | -         | Ø34+0,4 | -  | ~2,6         |
|                            | G04               | E                    | 177±1,5            | 24 min. | 18±0,2 | Ø121,5+0,3 | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~2,6         |
| 0.7.010.17                 | G04               | С                    | 166±1,5            | 14 min. | -      | Ø121,5+0,3 | G1/2    | -         | Ø34+0,4 | 41 | ~2,6         |
| 0,7-210-1X                 | G04               | E                    | 177±1,5            | 24 min. | 18±0,2 | Ø121,5+0,3 | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~2,7         |
|                            | G04               | С                    | 169±1,5            | 17 min. | -      | Ø123,6+0,3 | G1/2    | -         | Ø34+0,4 | 41 | ~3,2         |
| 0,7-250-1X                 | Z06               | Α                    | 163±1,5            | 14 min. | -      | Ø123,6+0,3 | M18x1,5 | -         | Ø30+0,4 | -  | ~2,9         |
|                            | G04               | Α                    | 163±1,5            | 14 min. | -      | Ø123,6+0,3 | G1/2    | -         | Ø34+0,4 | -  | ~2,9         |
|                            | G04               | С                    | 173±1,5            | 14 min. | -      | Ø128,5+0,6 | G1/2    | -         | Ø34+0,4 | 41 | ~4,0         |
| 0,7-350-2X                 | G04               | Е                    | 184±1,5            | 24 min. | 18±0,2 | Ø128,5+0,6 | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~4,0         |
|                            | G04               | С                    | 180±1,5            | 14 min. | -      | Ø136,2+0,3 | G1/2    | -         | Ø34+0,4 | 41 | ~3,5         |
| 1,0-200-1X                 | Z08               | С                    | 180±1,5            | 17 min. | _      | Ø136,2+0,3 | M22x1,5 | _         | Ø34+0,4 | 41 | ~3,5         |
| ,                          | G04               | E                    | 191±1,5            | 24 min. | 18±0,2 | Ø136,2+0,3 | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~3,6         |
| 1,0-250-1X                 | G04               | С                    | 181±1,5            | 17 min. | -      | Ø137+0,3   | G1/2    | -         | Ø34+0,3 | 41 | ~3,8         |
| ,                          | G04               | С                    | 191±1,5            | 14 min. | -      | Ø147+0,6   | G1/2    | -         | Ø34+0,4 | 41 | ~4,3         |
| 1,4-140-1X                 | G04               | E                    | 202±1,5            | 24 min. | 18±0,2 | Ø147+0,6   | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~4,2         |
|                            | G04               | С                    | 195±1,5            | 14 min. | -      | Ø152+0,6   | G1/2    | -         | Ø34+0,4 | 41 | ~5,5         |
| 1,4-250-1X                 | Z08               | С                    | 195±1,5            | 14 min. | _      | Ø152+0,6   | M22x1,5 | _         | Ø34+0,4 | 41 | ~5,5         |
| 1,1200 171                 | G04               | E                    | 206±1,5            | 24 min. | 18±0,2 | Ø152+0,6   | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~5,5         |
|                            | G04               | С                    | 198±1,5            | 14 min. | -      | Ø156+0,6   | G1/2    | -         | Ø34+0,4 | 41 | ~6,8         |
| 1,4-350-2X                 | G04               | E                    | 209±1,5            | 24 min. | 18±0,2 | Ø156+0,6   | G1/2    | M33x1,5   | Ø39±0,3 | 41 | ~6,8         |
|                            | G04               | С                    | 240±2              | 17 min. | -      | Ø144,7+0,5 | G1/2    | -         | Ø34+0,4 | 41 | ~4,1         |
| 2,0-100-1X                 | Z08               | C                    | 240±2              | 14 min. | _      | Ø144,7+0,5 | M22x1,5 | _         | Ø34+0,4 | 41 | ~4,1         |
| 2,0 100 17                 | G05               | E5                   | 258±1,5            | 16 min. | 20±0,2 | Ø144,7+0,5 | G3/4    | M45x1,5   | Ø49±0,3 | 50 | ~4,3         |
|                            | G04               | C                    | 251±1,5            | 14 min. | -      | Ø156+0,6   | G1/2    | -         | Ø34+0,4 | 41 | ~8,6         |
|                            | Z08               | С                    | 251±1,5            | 14 min. | _      | Ø156+0,6   | M22x1,5 | _         | Ø34+0,4 | 41 | ~8,6         |
| 2,0-250-1X                 | G05               | C                    | 251±1,5<br>251±0,5 | 16 min. | _      | Ø156+0,6   | G3/4    |           | Ø33+0,4 | 41 | ~8,6         |
|                            | G05               | E5                   | 269±1,5            | 16 min. | 20±0,5 | Ø156+0,6   | G3/4    | M45x1,5   | Ø49±0,3 | 50 | ~8,9         |
|                            | G05               | C                    | 251±1,5            | 14 min. | 20:0,3 | Ø156+0,6   | G3/4    | 1014371,3 | Ø33+0,4 | 41 | ~9,5         |
| 2,0-350-2X                 | G05               | E5                   | 269±1,5            | 16 min. | 20±0,5 | Ø156+0,6   | G3/4    | M45x1,5   |         | 50 | ~8,9         |
|                            | G04               | C                    | 266±2              | 17 min. | 20:0,3 | Ø160+0,3   | G1/2    | 1014371,3 | Ø34+0,4 | 41 | ~10,0        |
| 2,8-70-1X                  | Z08               | C                    | 266±2              | 17 min. | _      | Ø160+0,3   | M22x1,5 | _         | Ø34+0,4 | 41 | ~10,0        |
|                            | Z08               | С                    | 267±1,5            | 17 min. | _      |            |         |           | Ø34+0,4 |    | ~8,0         |
| 2 8-250-27                 | G05               | C                    |                    |         | _      | Ø168,5±1,5 | M22x1,5 | -         |         | 41 |              |
| 2,8-250-2X                 | 1                 |                      | 267±1,5            | 16 min. |        | Ø168,5±1,5 | G1/2    | MAENTE    | Ø33+0,4 | 41 | ~8,3         |
|                            | G05               | E5                   | 286±1,5            | 16 min. | 20±0,5 | Ø168,5±1,5 | G3/4    | M45x1,5   | Ø49±0,3 | 50 | ~9,0         |
| 2,8-350-1X                 | G05               | C                    | 264±1              | 16 min. | 2010 5 | Ø180+0,3   | G3/4    | MAENTE    | Ø34+0,4 | 55 | ~13,1        |
|                            | G05               | E5                   | 285±1              | 16 min. | 20±0,5 | Ø180+0,3   | G3/4    | M45x1,5   | Ø53-0,8 | 55 | ~13,3        |
| 3,5-250-2X                 | G05               | С                    | 312±1,5            | 16 min. | 20.05  | Ø168,5±1,5 | G3/4    |           | Ø33+0,4 | 41 | ~9,6         |
|                            | G05               | E5                   | 331±1,5            | 16 min. | 20±0,5 | Ø168,5±1,5 | G3/4    | M45x1,5   | Ø49±0,3 | 50 | ~9,8         |
| 3,5-350-1X                 | G05               | С                    | 304±1              | 16 min. | -      | Ø180+0,3   | G3/4    |           | Ø34+0,4 | 55 | ~16,5        |
|                            | G05               | E5                   | 325±1              | 16 min. | 20±0,5 | Ø180+0,3   | G3/4    | M45x1,5   | Ø53-0,8 | 55 | ~16,2        |

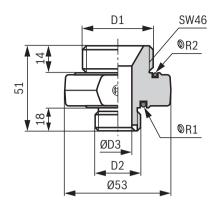
**Dimensioni:** Tipi preferiti: da 0,075 a 1 l (quote in mm)



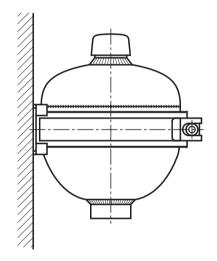
| Codici di ordinazione/tipo     | Volume/<br>pressione/<br>serie | Codice<br>prodotto | h         | h1      | d          | d1   | d3      | sw | Peso<br>[kg] |
|--------------------------------|--------------------------------|--------------------|-----------|---------|------------|------|---------|----|--------------|
| HAD0,075-250-1X/0G04C-1N111-BA | 0,075-250-1X                   | R901359266         | 110,5±1,5 | 14 min. | Ø64+0,3    | G1/2 | Ø29+0,4 | 32 | ~0,9         |
| HAD0,16-250-1X/0G04C-1N111-BA  | 0,16-250-1X                    | R901359268         | 119±1,5   | 14 min. | Ø75+0,3    | G1/2 | Ø29+0,4 | 32 | ~0,9         |
| HAD0,35-250-1X/0G04C-1N111-BA  | 0,35-250-1X                    | R901461019         | 141±1,5   | 17 min. | Ø95+0,3    | G1/2 | Ø34+0,4 | 41 | ~1,7         |
| HAD0,5-250-2X/0G04C-1N111-BA   | 0,5-250-2X                     | R901463743         | 151±1,5   | 17 min. | Ø106,7+0,3 | G1/2 | Ø34+0,4 | 41 | ~2,1         |
| HAD0,6-330-1X/0G04C-1N111-BA   | 0,6-330-1X                     | R901445989         | 170±1,5   | 17 min. | Ø110+0,3   | G1/2 | Ø34+0,4 | 41 | ~2,9         |
| HAD0,7-250-1X/0G04C-1N111-BA   | 0,7-250-1X                     | R901463745         | 169±1,5   | 17 min. | Ø123,6+0,3 | G1/2 | Ø34+0,4 | 41 | ~3,0         |
| HAD1,0-250-1X/0G04C-1N111-BA   | 1,0-250-1X                     | R901461023         | 181±1,5   | 17 min. | Ø137+0,3   | G1/2 | Ø34+0,4 | 41 | ~3,8         |

**Dimensioni:** Tipi preferiti: da 1,4 a 3,5 l (quote in mm)




| Codici di ordinazione/tipo   | Volume/<br>pressione/<br>serie | Codice<br>prodotto | h       | h1      | d          | d1   | d3      | sw | Peso<br>[kg] |
|------------------------------|--------------------------------|--------------------|---------|---------|------------|------|---------|----|--------------|
| HAD1,4-250-1X/0G04C-1N111-CE | 1,4-250-1X                     | R901463746         | 195±1,5 | 14 min. | Ø152+0,6   | G1/2 | Ø34+0,4 | 41 | ~5,5         |
| HAD2,0-250-1X/0G05C-1N111-CE | 2,0-250-1X                     | R901463747         | 251±1,5 | 16 min. | Ø156+0,6   | G3/4 | Ø33+0,4 | 41 | ~8,6         |
| HAD2,8-250-2X/0G05C-1N111-CE | 2,8-250-2X                     | R901463748         | 267±1,5 | 16 min. | Ø168,5±1,5 | G3/4 | Ø33+0,4 | 41 | ~8,3         |
| HAD3,5-250-2X/0G05C-1N111-CE | 3,5-250-2X                     | R901463764         | 312±1,5 | 16 min. | Ø168,5±1,5 | G3/4 | Ø33+0,4 | 41 | ~9,6         |

(quote in mm)


# Adattatore accumulatore per blocco di sicurezza adattatore accumulatore tipo ABZSS

Scegliere il tipo corrispondente secondo la scheda dati 50131.

| Accumulatore  | Blocco D2 | ØD3 | Cadiaa waadatta |
|---------------|-----------|-----|-----------------|
| D1            |           | 803 | Codice prodotto |
| M 22 x 1,5    |           | 12  | 1 533 359 012   |
| M 18 x 1,5    | M 33 x 2  | 8   | 1 533 359 013   |
| G 1/2 ISO 228 |           | 8   | 1 533 359 034   |



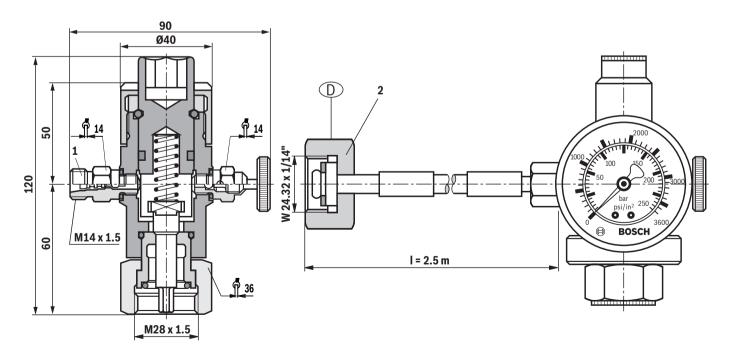
# Fascette di fissaggio, vedere tabella di scelta



| Tipo            | Codice prodotto | Denominazione                                |
|-----------------|-----------------|----------------------------------------------|
| HAD0,075-250-1X | -               |                                              |
| HAD0,16-250-1X  | -               |                                              |
| HAD0,35-160-1X  |                 |                                              |
| HAD0,35-210-1X  | 1531316017      | BEFESTIGUNGSSCHELLE 92-97 MM                 |
| HAD0,35-211-1X  |                 |                                              |
| HAD0,5-160-1X   | 1531316018      | BEFESTIGUNGSSCHELLE 101-111 MM               |
| HAD0,5-250-2X   | 1531316016      | BEFESTIGUNGSSCHELLE 101-111 MIM              |
| HAD0,6-330-1X   | 1531316021      | BEFESTIGUNGSSCHELLE 110-120 MM <sup>1)</sup> |
| HAD0,7-100-1X   | 1531316021      | BEFESTIGUNGSSCHELLE 110-120 MM <sup>1)</sup> |
| HAD0,7-180-1X   |                 |                                              |
| HAD0,7-207-1X   | 1501010015      | DEFECTIONING CONFILE 110 120 MM              |
| HAD0,7-210-1X   | 1531316015      | BEFESTIGUNGSSCHELLE 119-128 MM               |
| HAD0,7-250-1X   |                 |                                              |
| HAD0,7-350-2X   | R901073992      | BEFESTIGUNGSSCHELLE 128-136 MM               |
| HAD1,0-200-1X   | 1531316019      | BEFESTIGUNGSSCHELLE 135-145 MM               |
| HAD1,4-140-1X   |                 |                                              |
| HAD1,4-207-1X   | 1531316016      | BEFESTIGUNGSSCHELLE 145-155 MM               |
| HAD1,4-250-1X   | 1531316016      | BEFESTIGUNGSSCHELLE 145-155 MIM              |
| HAD1,4-350-2X   |                 |                                              |
| HAD2,0-100-1X   |                 |                                              |
| HAD2,0-207-1X   | 1531316016      | DEFECTIONNO CONTINUE 1 45 155 MM             |
| HAD2,0-250-1X   | 1531316016      | BEFESTIGUNGSSCHELLE 145-155 MM               |
| HAD2,0-350-2X   |                 |                                              |
| HAD2,8-70-1X    | 1521216022      | DEFECTIONING CONTINUE 100 170 MM 1)          |
| HAD2,8-250-2X   | 1531316022      | BEFESTIGUNGSSCHELLE 160-170 MM <sup>1)</sup> |
| HAD2,8-350-1X   | 1531316020      | BEFESTIGUNGSSCHELLE 170-180 MM               |
| HAD3,5-250-2X   | 1531316020      | BEFESTIGUNGSSCHELLE 170-180 MM               |
| HAD3,5-350-1X   | 1551516020      | BEFESTIGUNGSSCHELLE 1/0-180 MM               |

<sup>1)</sup> Utilizzabile per HAD e HAB

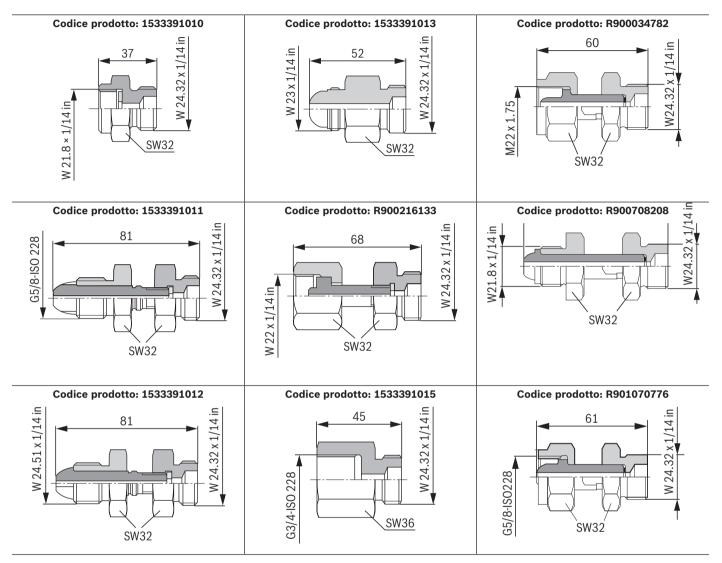
(quote in mm)


# Apparecchiatura di riempimento e controllo



| Valigetta di misurazione                                 | Codice prodotto |
|----------------------------------------------------------|-----------------|
| ▶ per accumulatore a membrana (HAD)                      | 0538103012      |
| ▶ per accumulatore a sacca e a membrana<br>(HAB/HAD)     | 0538103014      |
| ▶ Parti di ricambio:                                     |                 |
| <ul> <li>Valigetta (senza contenuto)</li> </ul>          | R901079781      |
| - Valvola di riempimento e di test HAB                   | 0538103005      |
| - Valvola di riempimento e di test HAD                   | 0538103006      |
| - Manometro 0 250 bar                                    | 1537231001      |
| - Tubo flessibile I = 2,5 m<br>con raccordo di passaggio | 1530712005      |

| Pezzi integrativi                                 |     | Codice prodotto |
|---------------------------------------------------|-----|-----------------|
| (da ordinare a parte)                             |     |                 |
| Manometro 0 25 bar                                |     | R900033955      |
| Manometro 0 60 bar                                |     | 1537231002      |
| Manometro 0 400 bar                               |     | 1537231005      |
| Raccordo di passaggio                             | F   | 1533391010      |
|                                                   | GB  | 1533391011      |
|                                                   | USA | 1533391012      |
|                                                   | KR  | 1533391013      |
|                                                   | J   | R900216133      |
|                                                   | RUS | 1533391015      |
| Tubo flessibile I = 5 m con raccordo di passaggio | D   | 1530712006      |


# Dimensioni: Valvola di riempimento e di test



- 1 Parte di ricambio, codice prodotto: 1537410065
- 2 Per adattatore vedere pagina 16 e 17

(quote in mm)

#### Adattatore bombola di azoto per dado per raccordi



# Adattatore bombola di azoto per dado per raccordi

| Paese 1)          | Codice prodotto |            |            |            |            |            |            |            |            |
|-------------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                   | 1533391010      | 1533391011 | 1533391012 | 1533391013 | R900216133 | 1533391015 | R900034782 | R900708208 | R901070776 |
| Brasile           |                 | х          |            |            |            |            |            |            |            |
| Bulgaria          |                 | х          |            |            |            |            |            |            |            |
| Cina              |                 |            |            |            |            |            |            |            | х          |
| Francia           | х               |            |            |            |            |            |            |            |            |
| Grecia            |                 | х          |            |            |            |            |            |            |            |
| Gran Bretagna     |                 | х          |            |            |            |            |            |            |            |
| India             |                 | х          |            |            |            |            |            |            |            |
| Italia            |                 |            |            |            |            |            |            | ×          |            |
| Giappone          |                 |            |            |            | ×          |            |            |            |            |
| Canada            |                 |            | х          |            |            |            |            |            |            |
| Corea del<br>Nord |                 |            |            | х          |            |            |            |            |            |
| Corea del Sud     |                 |            |            | х          |            |            |            |            |            |
| Malaysia          |                 | x          |            |            |            |            |            |            |            |
| Messico           | х               |            |            |            |            |            |            |            |            |
| Romania           | х               |            |            |            |            |            |            |            |            |
| Russia            |                 |            |            |            |            | ×          |            |            |            |
| Spagna            |                 | х          |            |            |            |            |            |            |            |
| Arabia Saudita    | Х               |            |            |            |            |            |            |            |            |
| Singapore         |                 | Х          |            |            |            |            |            |            |            |
| Taiwan            |                 |            |            |            |            |            | Х          |            |            |
| Turchia           |                 | Х          |            |            |            |            |            |            |            |
| USA               |                 |            | х          |            |            |            |            |            |            |

<sup>1)</sup> Altri paesi su richiesta

# Segnale di pericolo 1), 2)



| Segnale di pericolo                          | Codice prodotto |  |
|----------------------------------------------|-----------------|--|
| ▶ per accumulatore a membrana (HAD)          | R901441614      |  |
| dimensioni: 100 mm x 20 mm<br>colore: giallo |                 |  |

- É possibile montare il segnale di pericolo direttamente sull'accumulatore a partire dal volume nominale 0,35 l.
- 2) È possibile ordinare il segnale di pericolo a partire da una dimensione del lotto di 100 pezzi.

#### **Note importanti**

#### Uso conforme

Gli accumulatori a membrana Rexroth tipo HAD..-1X/2X sono previsti per il montaggio di sistemi di azionamento nella costruzione di macchine fisse e di impianti. Per le applicazioni mobili oppure per applicazioni nelle quali, nel funzionamento conforme, agiscono delle forze di accelerazione sull'accumulatore a membrana, è consentito l'utilizzo soltanto previa autorizzazione da parte del product manager Rexroth competente. Si prega di contattare l'ufficio tecnico Distribuzione. Gli accumulatori a membrana Rexroth tipo HAD..-1X/2X non sono destinati all'uso privato.

#### Istruzioni per la progettazione

Collegare saldamente, in modo sicuro e durevole, gli accumulatori a membrana alla macchina o all'impianto mediante gli elementi di fissaggio. Il fissaggio deve tenere la connessione per olio priva di tensione. In particolare, non devono passare attraverso la connessione per olio forze di tensione oppure forze apparenti statiche o dinamiche.

Nella scelta dei punti di fissaggio idonei osservare la dilatazione termica della struttura portante e le vibrazioni dell'ambiente circostante.

# Indicazioni per la sicurezza per accumulatori idropneumatici

L'operatore è tenuto ad allegare alla macchina o all'impianto il manuale d'uso RD 50150-B e per i serbatoi > 1 litro la dichiarazione di conformità CE.

Le note generali per accumulatori idropneumatici negli impianti idraulici vengono fornite dalla DIN EN ISO 4413.

Conservare con cura i documenti forniti. Questi potrebbero essere necessari in caso di verifiche da parte di esperti.

#### Dispositivi di sicurezza

#### Mota:

In base alla direttiva sugli apparecchi a pressione 2014/68/UE gli accumulatori idropneumatici devono essere dotati di protezione contro il funzionamento al di fuori dei limiti consentiti.

#### Disposizioni di legge

Gli accumulatori idraulici sono recipienti in pressione e sono soggetti alle prescrizioni o alle direttive nazionali del rispettivo punto d'installazione.

In Germania si applica il Betriebssicherheitsverordnung, BetrSichV (Regolamento tedesco sulla sicurezza nelle aziende).

Per utilizzi speciali vanno eventualmente osservate norme aggiuntive, ad esempio nelle costruzioni navali, aeronautiche e nell'industria mineraria.

#### Personale abilitato

Ai sensi della Betriebssicherheitsverordnung, BetrSichV (Regolamento tedesco sulla sicurezza nelle aziende), le verifiche possono essere eseguite soltanto dal personale abilitato.

Per personale abilitato si intendono coloro che attraverso una formazione professionale, esperienza professionale e la recente attività professionale dispongono delle necessarie competenze tecniche.

Per il rispetto della massima pressione d'esercizio Bosch Rexroth raccomanda l'uso di un blocco di sicurezza accumulatore tipo ABZSS secondo la scheda dati 50131.

#### Messa in funzione

# Condizioni di montaggio

#### Pressione di precarica

Di norma gli accumulatori a membrana vengono forniti pronti alla messa in funzione. La pressione di precarica (p<sub>0</sub>) è impressa sull'alloggiamento dell'accumulatore.

#### Gas di riempimento

Gli accumulatori idropneumatici possono essere riempiti solo con azoto di classe 4.0, N2 99,99 % vol.

#### Temperatura d'esercizio ammessa

Gli accumulatori idropneumatici di Rexroth in "esecuzione standard" sono adatti per temperature d'esercizio da -15 a +80 °C.

In caso di temperature diverse consultare Bosch Rexroth.

#### Posizione di installazione

La posizione di installazione dell'accumulatore a membrana può essere scelta a piacere.

Per l'apparecchiatura di controllo e riempimento sulla valvola del gas deve essere lasciato libero uno spazio di montaggio di 200 mm.

#### **Fissaggio**

L'accumulatore dev'essere fissato in modo tale che eventuali forze originate ad esempio dalle vibrazioni o accelerazioni provocate dall'utilizzo, possano essere assorbite in modo sicuro. In caso di più punti di fissaggio evitare le tensioni causate da deformazioni elastiche o da variazioni di temperatura dovute al funzionamento.

Bosch Rexroth offre apposite fascette di fissaggio (vedere pagina 14).

## Ulteriori informazioni

#### Manuale d'uso

| Manuale d'uso |
|---------------|
| RD 50150-B    |
| RE 50150-B    |
| RS 50150-B    |
| RF 50150-B    |
| RI 50150-B    |
| R-RS 50150-B  |
| R-CZ 50150-B  |
| R-PL 50150-B  |
| RC 50150-B    |
| RT 50150-B    |
|               |

#### Dichiarazione di conformità CE

in tedesco, inglese, francese

| Tipo           | Dichiarazione di conformità |
|----------------|-----------------------------|
| HAD fino a 1,0 | -                           |
| HAD1,4-140-1X  | RA50835411                  |
| HAD1,4-250-1X  | RA50835430                  |
| HAD1,4-350-1X  | RA50835474                  |
| HAD2,0-100-1X  | RA50835499                  |
| HAD2,0-250-1X  | RA50835536                  |
| HAD2,0-350-2X  | RA50835604                  |
| HAD2,8-70-1X   | RA50835627                  |
| HAD2,8-250-2X  | RA50835731                  |
| HAD2,8-350-1X  | RA50835846                  |
| HAD3,5-250-2X  | RA50835875                  |
| HAD3,5-350-1X  | RA50835914                  |

# **Appunti**

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany telefono +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de © Tutti i diritti sono riservati alla Bosch Rexroth AG, anche riguardanti trasferimento, sfruttamento, riproduzione, rielaborazione, distribuzione e anche in caso di domande di diritti di proprietà industriale. Le informazioni fornite servono solo alla descrizione del prodotto. Da esse non si può estrapolare una dichiarazione da parte nostra relativa ad una determinata

si può estrapolare una dicinal azione da par le nostra relativa ad una determinata caratteristica o ad un'idoneità per un determinato uso. Le informazioni fornite non dispensano l'utilizzatore dall'eseguire valutazioni e verifiche proprie. Si deve considerare che i nostri prodotti sono soggetti ad un processo naturale di usura ed invecchiamento.