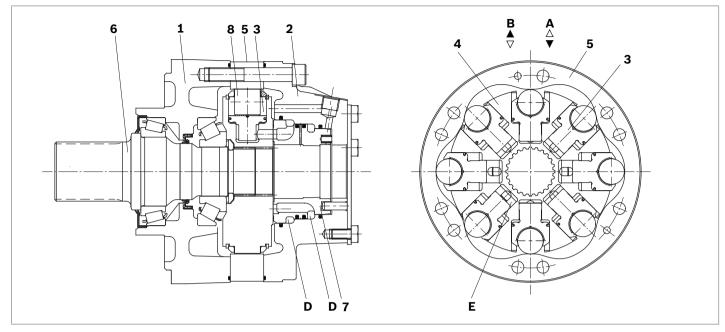


Radial piston motor for frame integrated drives MCR-A

- Frame size MCR3, MCR5, MCR10, MCR15
- Displacement 160 cc to 2150 cc
- Differential pressure up to 450 bar
- ▶ Torque output up to 13687 Nm
- ▶ Speed up to 875 rpm
- Open and closed circuits

Features


- Compact robust construction
- High volumetric and mechanical efficiencies
- Front case mount
- Splined drive shaft
- High reliability
- Low maintenance
- Smooth running at very low speeds
- Low noise
- Bi-directional
- Sealed tapered roller bearings
- Freewheeling possible
- ► Available with:
 - Holding brake (multi-disc)
 - Bi-directional two speed
 - Integrated flushing valve
 - Speed sensor

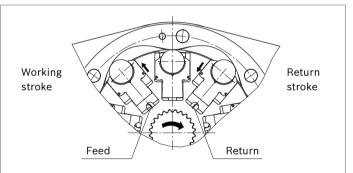
Contents

2
5
7
8
9
10
14

2 **MCR-A** | Radial piston motor for frame integrated drives Functional description

Functional description

Hydraulic motors of the type MCR-A are radial piston motors incorporating a front case mounting and splined drive shaft. A-type motors are suitable for a variety of applications either as a direct drive into a gearbox or by fitting an external component (e.g. gear pinion or chain sprocket). They are suitable for use in open or closed circuit operations.


Construction

Two part housing (1, 2), rotary group (3, 4, 8), cam (5), drive shaft (6) and flow distributor (7)

Transmission

The cylinder block (4) is connected to the shaft (6) by means of splines. The pistons (3) are arranged radially in the cylinder block (4) and make contact with the cam (5) via rollers (8).

Torque generation

The number of working and return strokes corresponds to the number of lobes on the cam multiplied by number of pistons in the cylinder block.

Flow paths

The ports **A** and **B**, which are located in the rear case, carry oil through the distributor to the cylinder chambers (**E**).

Bearings

Tapered roller bearings capable of transmitting high axial and radial forces are fitted as standard.

Freewheeling

In certain applications there may be a requirement to freewheel the motor. This may be achieved by connecting ports **A** and **B** to zero pressure and simultaneously applying a pressure of 2 bar to the housing through port **L**. In this condition, the pistons are pushed back into the cylinder block, the rollers to lose contact with the cam which allows free rotation of the shaft.

Two speed operation (2W)

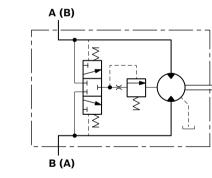
In mobile applications where vehicles are required to operate at high speed with low motor loads, the motor can be switched to a low-torque and high-speed mode. This is achieved by operating an integrated valve which directs hydraulic fluid to only one half of the motor while continuously re-circulating the fluid in the other half. This "reduced displacement" mode reduces the flow required for a given speed and gives the potential for cost and efficiency improvements. The motor maximum speed remains unchanged.

Bosch Rexroth has developed a special spool valve to allow smooth switching to reduced displacement whilst on the move. This is known as "soft-shift" and is a standard feature of 2W motors. The spool valve requires either an additional sequence valve or electro-proportional control to operate in "soft-shift" mode.

For more information refer to the MCR information sheet on "2-speed soft shift" (RE 15225-03).

Two Stroke Cams (2W)

Standard two speed operates with a reduced displacement which is half full displacement. In some cases it is possible to offer a motor with a reduced displacement that is not 50% (e.g. 60% full displacement).

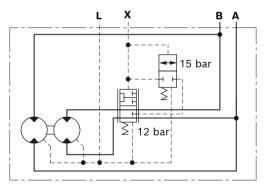

For further information contact Bosch Rexroth Engineering Dept, Glenrothes.

Flushing valve

In a closed circuit, the same hydraulic fluid continuously flows between the pump and the motor. This could therefore lead to overheating of the hydraulic fluid. The function of the flushing valve option is to replace hydraulic fluid in the closed circuit with that from the reservoir. When the hydraulic motor is operated under load, either in the clockwise or anti-clockwise direction, the flushing valve opens and takes a fixed flow of fluid through an orifice from the low pressure side of the circuit. This flow is then fed to the motor housing and back to the reservoir normally via a cooler. In order to charge the low pressure side of the circuit, cool fluid is drawn from the reservoir by the boost pump and is fed to the pump inlet through the check valve. Thus the flushing valve ensures a continuous renewal and cooling of the hydraulic fluid. The flushing feature incorporates a relief valve which is used to maintain a minimum boost pressure and operates at a standard setting of 14 bar (other options available on request).

Different orifice sizes may be used to select varying flows of flushing fluid. The following table gives flushing rate values based on a boost / charge pressure of 25 bar. For more information, refer to the MCR Information Sheet "Standard Flushing on MCR Motors", RE 15225-01.

Schematic



Flushing flow rates

Flushing code	Orifice size	Flow [l/min]	at 25 bar ¹⁾
	[mm]	min	max
F1	Ø1	2.2	2.7
F2	Ø1.5	5.0	6.1
F4	Ø2	8.2	10.7
F6	Ø2.3	8.8	11.4
F7	Ø1.7	6.4	7.8

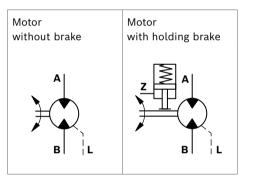
1) 0.6 mm Shim (Standard), Cracking pressure = 11±3 bar

Schematic

Holding brake (multi-disc brake)

Mounting

By way of rear housing and brake shaft.

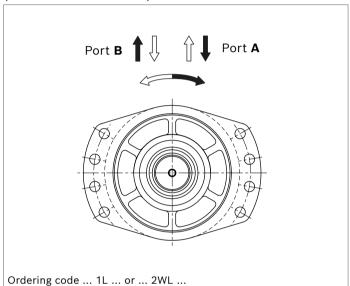

Brake application

An optional holding brake is available to ensure that the motor cannot turn when the machine is not in use. This works on the principle of a Spring Applied Hydraulic Release (SAHR) Brake and is released when oil pressure is applied to brake port **Z**. In the event of a loss of hydraulics, the brake can be released manually. Refer to the MCR operating manual RE15215-01 for more information on manual brake release.

Notice

The brakes are intended only for static use. Use of the brakes in a dynamic case will cause damage to the motor!

Schematic diagrams


Speed sensor

Sensors can then be connected to a controller such as the Rexroth BODAS controller.

The motor can also be supplied fitted with a target disc and with a speed sensor port machined, but covered and sealed with a blanking plate. These "sensor-ready" motors may be fitted with a sensor at a later date. For more details refer to the MCR Information Sheet "Speed Sensors on MCR Motors" RE15225-06.

Direction of shaft rotation with flow

(viewed from drive shaft)

Ordering code

	01	02		03	04	05		06			07		08	09	10	1	1	12	13	14	15
	MCR			Α				Ζ		1											
						-															
	lial piston mot Radial-piston		w-sp	eed, l	high-tor	que m	otor	-													мс
ra	me size																				•
)2	Frame size 3									·											3
	5																				5
	1	0																			10
	1	5																			15
łοι	using type																				•
03	Front case fla	nged																			Α
lor	ninal size, disp	laceme	ent V,	a in cr	m³/rev																
	Frame size 3			>								T	160	225	255	280	325	365	400	1	
	Low displa	cement:	: mot	ors us	se stanc	dard cy	/lind	rical	pist	ons	LD		•	•	•	•	-	-	-		
	High displa	cement	t: mo	tors ι	use step	ped p	isto	ns			HD		-	-	-	-	•	•	•		
	Frame size 5			-		-						ſ	380	470	520	565	620	680	750	820]
	Low displa	cement:	: mot	ors us	se stanc	Jard cy	/lind	rical	pist	ons	LD		•	٠	•	•	-	-	-	-	1
	High displa	cement	t: mo	tors ι	use step	ped p	isto	ns			HD		-	-	-	-	•	•	•	•	1
	Frame size 10							-	-				780	860	940	1120	1250) 134	0		_
	Low displa	cement:	: mot	ors us	se stanc	dard cy	/lind	rical	pist	ons	LD		•	•	•	-	- 1	-			
	High displa	cement	t: mo	tors ι	use step	ped p	isto	ns			HD		-	-	-	•	•	•			
	Frame size 15											T	1130	1250	1500	1780	2150	0			
	Low displa	cement:	: mot	ors us	se stand	dard cy	/lind	rical	pist	ons	LD		•	•	•	-	-	1			
	High displa	cement	t: mo	tors ι	use step	ped p	isto	ns			HD		-	-	-	•	•				
Driv	ve shaft																				
	Spline shaft A	NSI B92	2.1										MCR3								A45
													MCR5								A60
												-	MCR1	0							A75
												-	MCR1	5							W8
lea	ar shaft																				· · · ·
	Without rear s	haft																			z
er	ies																				
07	Series 32																				32
	Series 33																				33
Bra	ke												мс	:R3	м	CR5	м	CR10	м	CR15	-
28	Without brake												•			•		•		•	A0
	Hydraulic rele		ing a	pplier	d multi-	disc h	oldi	ng br	ake		2200 Nm	╎	•	•		•	1	_		-	B2
		-									4400 Nm	╈	_	-		•	1	-		-	B4
										-	4400 Nm	╈	_	-		_	1	•		-	B5
										-	7000 Nm	╈	-	-		_	1	•		-	B7
										-	11000 Nr	n	-	-		_		-		•	B11
iea	ls							-													
	NBR (nitrile ru	ubber)																			м

• = Available - = Not available

6 **MCR-A** | Radial piston motor for frame integrated drives Ordering code

	01	02	03	04	05	06		07	08	09	10	11	12	13	14	15
	MCR		Α			Z	1									
Sin	gle/two-speed	d operatio	on .						м	CR3	MCR	5	MCR10	м	CR15	
10	Single speed	, standaro	d directio	on of rot	ation					•	٠		•		•	1L
	Bi-directiona	l two spe	ed, stan	dard dire	ection of	f rotation	ר ¹⁾			•	٠		-		-	2WL
	Switchable t	wo speed	, anti-clo	ockwise o	directior	n of rota	tion			-	•		-		•	2L
	Switchable t	wo speed	, clockw	ise direc	tion of r	rotation				-	•		-		•	2R
Por	ts								м	CR3	MCR	5	MCR10	м	CR15	
11	Tapped with	BSP threa	ad (ISO :	228-1)						•	٠		-		-	01
	Tapped with	BSP threa	ad (ISO :	228-1)						-	-		•		•	11
	Tapped with	UNF threa	ad (ISO	11926)						•	•		-		-	12
	Tapped with A and B port			,	noles (S	AE J518	-2)			-	-		•		•	42
Stu	ds															
12	Without stud	s (no cod	e)													
Flu	shing															
13	Without flush	ning (no c	ode)													
	With flushing	g (see tab	le on pa	ge 3)												F1-F7
Spe	ed sensor															
14	Without sens	sor (no co	de)													
	Speed senso	r ready														P3
	Speed senso	r DSA2 -	12+24V													P5
	Speed senso	r DSA1 -	12+24V													P6
Spe	cial order															
15	Special featu	ire														SOXXX
• =	Available	- = No	t availa	ble												

1) Not available for MCR10A

Footer from page 7

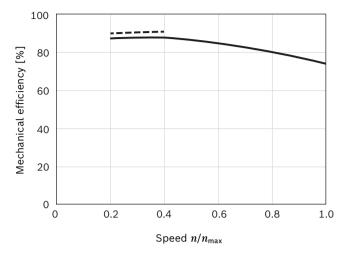
- 1) Ensure motor case is filled with oil prior to start-up.
- 2) For installation and maintenance details, please see instruction manual 15215-B.
- 3) For more information on hydraulic fluids, see datasheets 90220 and 90223
- 4) Maximum values should only be applied for a small portion of the duty cycle. Please consult Bosch Rexroth Engineering. Department in Glenrothes for motor life calculations based on particular operating cases.
- 5) When operating motors in series, please consult Bosch Rexroth Engineering Department in Glenrothes.
- For continuous operation at speeds <5 rpm please consult Bosch Rexroth Engineering Department in Glenrothes.
- 7) Based on nominal no-load Δp of 20 bar in full-displacement mode.
- 8) Caution:

Brake torque may be significantly lower when using fluids other than mineral oil. Brake hold must be checked on an applicationspecific basis, for further advice contact the Engineering Department at Bosch Rexroth, Glenrothes.

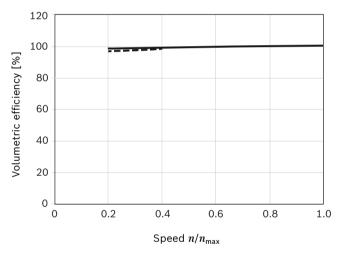
Notice

- Motor performance values are based on theoretical calculations.
- Efficiencies are not taken into consideration for theoretical calculations.
- Brake torque accounts for tolerances. Values are based when used with standard mineral oil (HLP).
- During the running in period of the motor (min 20 hrs) it should not be run unloaded at >100 rpm

Please refer the related foot notes for more details.

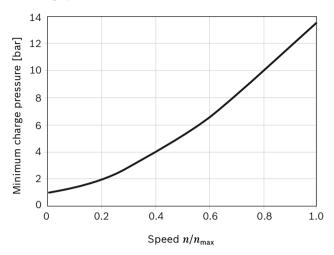

Technical data

Frame size			MCR3	MCR5	MCR10	MCR15				
Type of mounting			Front c	ase flange	e mountin	g				
Pipe connections ¹⁾²⁾			Thread	ed per IS	0 11926 a	and ISO2	28-1; Fla	nged per	SAE J518	3-2
Shaft loading			see pag	ge 9						
Weight (unbraked)										
Single speed (1L)	т	kg	24	43	68	102				
Two speed (2WL)	т	kg	37	50	73	-				
Two speed (2L/2R)	т	kg		43		102				
Hydraulic fluid ³⁾			Mineral	oil type	HLP/HLVI	o to DIN	51524			
Fluid cleaniness			ISO 440	06, Class	20/18/15	5				
Fluid viscosity range	$v_{min/max}$	mm²/s	10 to 2	000						
Fluid temperature range	$ heta_{\min/\max}$	°C	-20 to	+85						
Pressure			Low dis	placeme	nt		High di	splaceme	nt	
Maximum differential pressure ⁴⁾⁵⁾	$\Delta p_{\sf max}$	bar	450				400			
Maximum pressure at port A or $\mathbf{B}^{4)5)}$	p_{max}	bar	470				420			
Maximum case drain pressure	$p_{\sf case\ max}$	bar	10				10			
Motor performance MCR3										
Displacement	V_{g}	cm ³ /rev	160	225	255	280	325	365	400	
Specific torque		Nm/bar	2.54	3.61	4.05	4.39	5.21	5.83	6.33	
Maximum torque ⁴⁾	T_{\max}	Nm	1146	1611	1826	2005	2069	2324	2546	
Minimum speed for smooth running ⁶⁾	n_{\min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Maximum speed (1L) ⁷⁾	n_{\max}	rpm	670	475	420	385	330	295	270	
Maximum speed (2WL) ⁷⁾	n_{\max}	rpm	875	620	550	500	430	385	350	
Motor performance MCR5										
Displacement	Vg	cm ³ /rev	380	470	520	565	620	680	750	820
Specific torque		Nm/bar	6.13	7.48	8.24	8.97	9.85	10.83	11.94	12.99
Maximum torque ⁴⁾	T _{max}	Nm	2722	3366	3724	4047	3947	4329	4775	5220
Minimum speed for smooth running ⁶⁾	n_{\min}	rpm	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Maximum speed (1L) ⁷⁾	n_{\max}	rpm	475	385	350	320	290	265	240	220
Maximum speed (2WL) ⁷⁾	n_{\max}	rpm	570	465	420	385	350	320	290	265
Motor performance MCR10										
Displacement	V_{g}	cm ³ /rev	780	860	940		1120	1250	1360	
Specific torque		Nm/bar	12.46	13.71	14.96		18.04	19.85	21.65	
Maximum torque ⁴⁾	T _{max}	Nm	5586	6159	6732		7130	7958	8531	
Minimum speed for smooth running ⁶⁾	n_{\min}	rpm	0.5	0.5	0.5		0.5	0.5	0.5	
Maximum speed (1L and 2WL) ⁷⁾	n_{\max}	rpm	215	195	180		150	135	125	
Motor performance MCR15										
Displacement	Vg	cm ³ /rev	1130	1250	1500		1780	2150		
Specific torque	ŭ	Nm/bar	18.09	20.02	24.04		28.51	34.41		
Maximum torque ⁴⁾	T _{max}	Nm	8093	8952	10743		11332	13687		
Minimum speed for smooth running ⁶⁾	n_{\min}	rpm	0.5	0.5	0.5		0.5	0.5		
Maximum speed (1L and 2L/2R) ⁷⁾	n_{\max}	rpm	145	130	110		105	90		
Brake			MCR3		MCR5		MCR10)	MCR15	
Holding brake (disc brake)			B2		B2	В4	B5	B7	B11	
Minimum holding torque ⁸⁾	$t_{\min/\max}$	Nm	2200		2200	4400	4400	7000	11000	
Release pressure (min)	$p_{\rm rel\ min}$	bar	11		11	11	11	11	12	
Release pressure (max)	$p_{\rm rel\ max}$	bar	15		15	15	15	15	15	
Maximum pressure at brake port "Z"	$p_{\rm max}$	bar	40		40	40	30	30	30	
Oil volume to operate brake	V _{rel}	cm ³	23		23	39	17	58	77	


8 **MCR-A** | Radial piston motor for frame integrated drives Efficiencies

Efficiencies

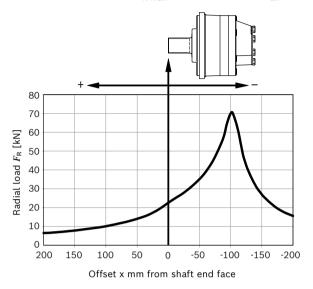
Mechanical efficiency



Volumetric efficiency

Charge pressure

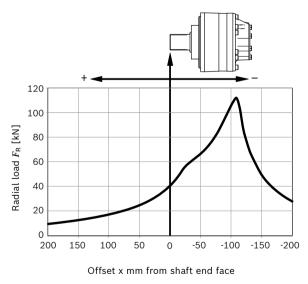
Notice


- If the correct charge pressure is not maintained and the motor is starved of oil, the motor may go into free wheel mode!
- For specific performance information or operating conditions contact the Engineering Department at Bosch Rexroth, Glenrothes.

Permitted loading on drive shaft

(Speed n = 50 rpm, pressure differential Δp = 250 bar, 2000 hrs L10 life at 50 °C)

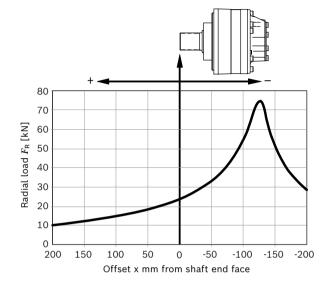
Drive shaft3A A45....


Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$): $F_{ax max} = 30700 \text{ N} \leftarrow +$ $F_{ax max} = 25200 \text{ N} \rightarrow -$

Drive shaft5A A60....

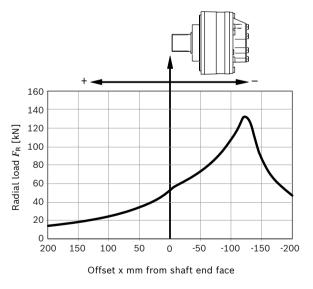
Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)


Maximum axial load $F_{ax max}$ (with radial load F_{R} = 0): $F_{ax max}$ = 49000 N \leftarrow + $F_{ax max}$ = 35400 N \rightarrow -

Notice

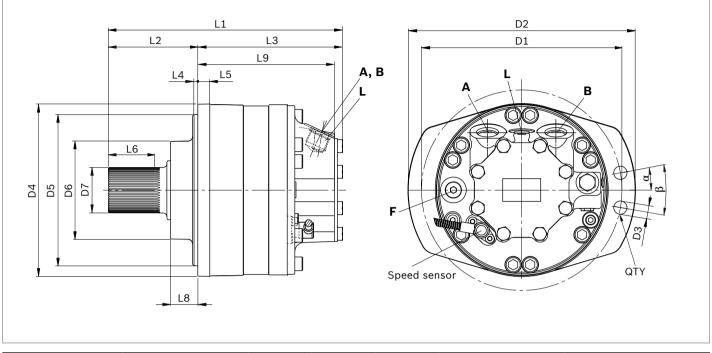
- These values and graphs are for initial guidance only
- For actual motor life calculations under typical or specified duty cycles, contact the Engineering Department at Bosch Rexroth, Glenrothes.

Drive shaft ...10A A75...


Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load $F_{R} = 0$): $F_{ax max} = 68000 \text{ N} \leftarrow +$ $F_{ax max} = 63400 \text{ N} \rightarrow -$

Drive shaft ...15A W80...


Maximum radial load $F_{R max}$ (with axial load $F_{ax} = 0$)

Maximum axial load $F_{ax max}$ (with radial load F_{R} = 0): $F_{ax max}$ = 95400 N \leftarrow + $F_{ax max}$ = 82600 N \rightarrow - 10 **MCR-A** | Radial piston motor for frame integrated drives Dimensions

Dimensions

MCR-A single speed (1L)

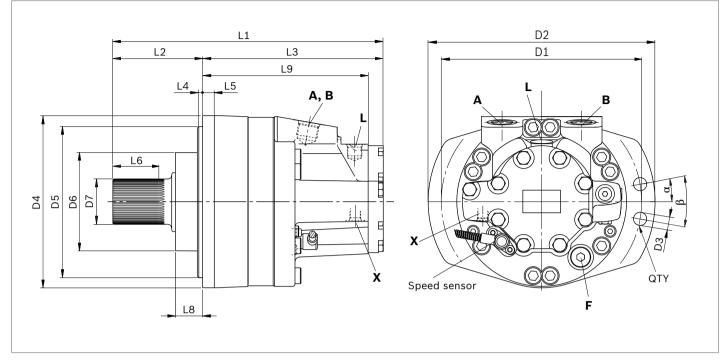
Motor	D1	D2	D3	D4	D5	D6	D7
MCR3	ø210	ø237	ø14	ø198	ø180	ø100	ø45.52
MCR5	ø265	ø300	ø17.5	ø228	ø200	ø131	ø60.2
MCR10	ø300	ø335	ø17.5	ø262	ø224	ø160	ø74.6
MCR15	ø335	ø375	ø22.5	ø310	ø280	ø176	ø80

Motor	L1	L2	L3	L4	L5	L6	L8	L9	α	β	QTY	
MCR3	242	75	167	6	15	54	24	157	0°	15°	10	
MCR5	308.5	118.5	190	5	23	61	36	179	10°	20°	8	
MCR10	352	110	242	12	25	47	32	223	0°	15°	10	
MCR15	383.5	133	250.5	17	26	57	46	224.9	10°	20°	8	

Ports

			SAE Ports		BSP Ports			
Motor	Designation	Port function	Standard	Size	Standard	Size	p _{max} [bar]	State ²⁾
MCR3	А, В	Inlet, outlet	ISO 11926	7/8-14 UNF	ISO 228-1	3/4 BSP	470/4201)	0
	L	Case drain	ISO 11926	9/16-18 UNF	ISO 228-1	3/8 BSP	10	0
	F	Filler port	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	Х
MCR5	А, В	Inlet, outlet	ISO 11926	1 1/16-12 UNF	ISO 228-1	3/4 BSP	470/4201)	0
	L	Case drain	ISO 11926	3/4-16 UNF	ISO 228-1	3/8 BSP	10	0
	F	Filler port	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	Х
MCR10	А, В	Inlet, outlet	SAE J518-2	3/4 in	SAE J518-2	3/4 in	420	0
	L	Case drain	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	0
	F	Filler port	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	Х
MCR15	А, В	Inlet, outlet	SAE J518-2	3/4 in	SAE J518-2	3/4 in	420	0
	L	Case drain	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	0
	F	Filler port	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	Х

1) Depends on displacement


2) O = Must be connected (plugged on delivery)

Before finalising your design, request a specific installation drawing. Dimensions may vary from the data sheet.

X = Metal plug fitted (in normal operation)

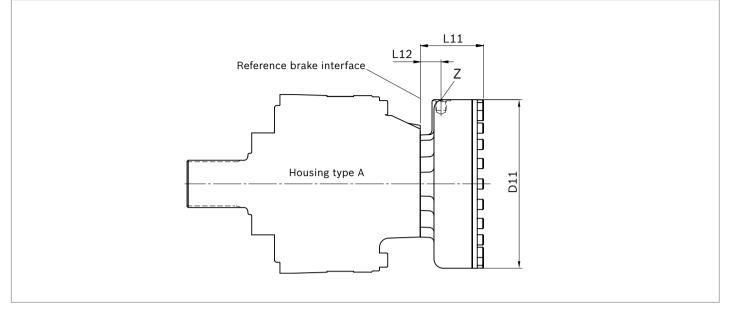
12 **MCR-A** | Radial piston motor for frame integrated drives Dimensions

MCR-A two speed (2WL)

Motor	D1	D2	D3	D4	D5	[06	D7			
MCR3	ø210	ø237	ø14	ø198	ø18	0 ø	v100	ø45.52			
MCR5	ø265	ø300	ø17.5	ø228	ø20	0 ø	v131	ø60.2			
Motor	L1	L2	L3	L4	L5	L6	L8	L9	α	β	QTY
MCR3	219.5	93.1	226.5	6	15	53.5	22.75	5 208.5	0°	15°	10
MCR5	358.8	118.5	240.3	10	23	61	36	216.7	10°	20°	8

Ports

			SAE Ports		BSP Ports			
Motor	Designation	Port function	Standard	Size	Standard	Size	p_{\max} [bar]	State ²⁾
MCR3	А, В	Inlet, outlet	ISO 11926	1 1/16-12 UNF	ISO 228-1	3/4 BSP	470/420 ¹⁾	0
	L	Case drain	ISO 11926	9/16-18 UNF	ISO 228-1	3/8 BSP	10	0
	F	Filler port	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	Х
	x	2 speed port	ISO 11926	9/16-18 UNF	ISO 228-1	1/4 BSP	35	0
MCR5	А, В	Inlet, outlet	ISO 11926	1 1/16-12 UNF	ISO 228-1	3/4 BSP	470/420 ¹⁾	0
	L	Case drain	ISO 11926	3/4-16 UNF	ISO 228-1	3/8 BSP	10	0
	F	Filler port	ISO 11926	3/4-16 UNF	ISO 228-1	1/2 BSP	10	Х
	x	2 speed port	ISO 11926	9/16-18 UNF	ISO 228-1	1/4 BSP	35	0


1) Depends on displacement

2) O = Must be connected (plugged on delivery)

X = Metal plug fitted (in normal operation)

Before finalising your design, request a specific installation drawing. Dimensions may vary from the data sheet.

Holding brake (multi-disc brake)

Motor	Brake	L11	L12	D11
MCR3	B2	67.3	22	ø174
MCR5	B2	67.3	22	ø174
	B4	80.7	26.5	ø215
MCR10	B5	84.7	26.5	ø215
	B7	97.8	29	ø251
MCR15	B11	102.3	33	ø282

			SAE Ports		BSP Ports			
Motor	Designation	Port function	Standard	Size	Standard	Size	p _{max} [bar]	State ¹⁾
MCR3	z	Brake port	ISO 11926	9/16-18 UNF	ISO 228-1	1/4 BSP	40	0
MCR5	Z	Brake port	ISO 11926	9/16-18 UNF	ISO 228-1	1/4 BSP	40	0
MCR10	Z	Brake port	ISO 11926	9/16-18 UNF	ISO 228-1	3/8 BSP	30	0
MCR15	Z	Brake port	ISO 11926	9/16-18 UNF	ISO 228-1	3/8 BSP	30	0

1) O = Must be connected (plugged on delivery)

Before finalising your design, request a specific installation drawing. Dimensions may vary from the data sheet.

14 **MCR-A** | Produktbezeichnung Selection guide

Selection guide

Data	Motor type		Frame size						
sheet	Application		3 160400 cc	4 260470 cc	5 380820 cc	6 820920 cc	10 7801340 cc	15 11302150 cc	20 17503000 cc
15198	MCR-F Wheel drives	100	•	_	•	_	•	•	-
15200	MCR-W Heavy duty wheel drives		•	-	•	-	•	-	_
15197	MCR-C Compact drives		-	-	-	-	-	-	•
15195	MCR-A Frame integrated drives		•	-	•	-	•	•	-
15226	MCR-S Chain drives		_	•	-	_	-	-	-
15221	MCR-T Track drives		-	-	•	•	•	-	-
15199	MCR-H Integrated drives		•	-	•	_	•	•	•
15223	MCR-R Series 41 Hydraulic drive assist		-	-	-	_	•	-	-
15196	MCR-D Industrial applications		•	-	٠	_	٠	-	-
	MCR-E Industrial applications		-	-	•	_	-	-	-

Bosch Rexroth Limited

Viewfield Industrial Estate Glenrothes, Fife Scotland, KY6 2RD UK Phone +44 15 92 631 777 Telefax +44 15 92 631 936 www.boschrexroth.com © Bosch Rexroth AG 2020. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.