Servo solenoid valves with on-board electronics (OBE)

RE 29088/01.05 Replaces: 05.04

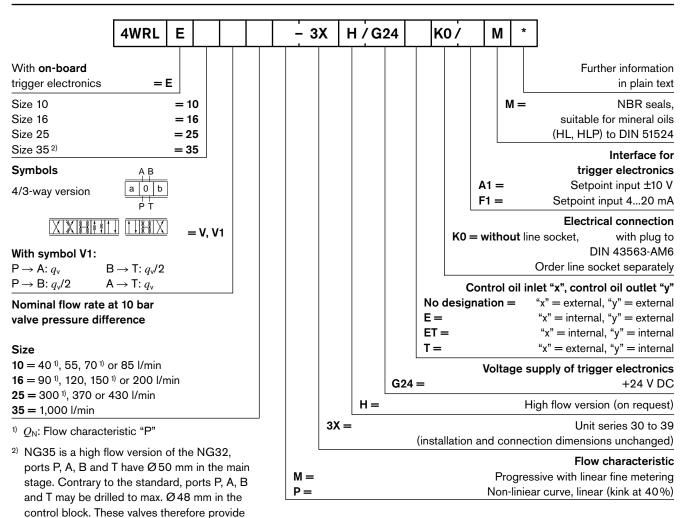
1/18

Type 4WRLE 10...35, symbols V/V1

Size 10, 16, 25, 35 Unit series 3X Maximum working pressure P, A, B 350 bar, T, X, Y 250 bar Nominal flow rate 40...1,000 l/min (Δp 10 bar)

List of contents

Contents Page **Features** Ordering data and scope of delivery 2 Preferred types 2 Function, sectional diagram 3 3 Symbols Control oil supply Technical data 5 to 7 On-board trigger electronics 8 and 9 10 and 11 Performance curves 12 to 15 Unit dimensions Mounting hole configurations 16 and 17


Variants on request

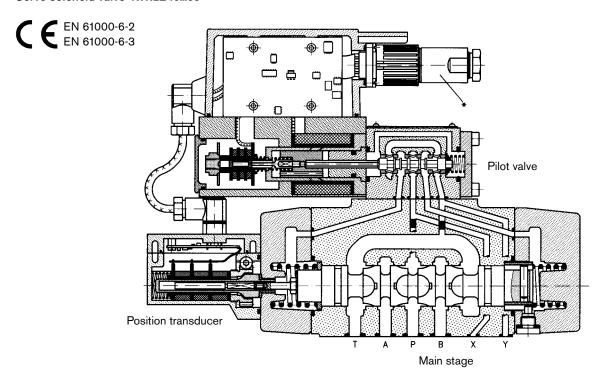
- For standard applications
- Special symbols for plastic injection-moulding machines
- Possible valve electronics with 11P+PE line socket and extension of the module.

Features

- Pilot operated servo solenoid valves NG10 to NG35
- Pilot valve NG6, with control piston and sleeve in servo quality
- Actuated on one side, 4/4 fail-safe position when switched off
- Control solenoid with integral position feedback and on-board electronics (OBE), calibrated at the factory
- Main stage in servo quality with position feedback
- Flow characteristic
 - M = Progressive with fine metering notch
 - P = Non-linear curve
 - L = Linear (only available on request)
- Electrical connection 6P+PE
 Signal input difference amplifier with interface
 A1 ±10 V, or interface F1 4...20 mA (R_s 200 Ω)
- Suitable for electrohydraulic controllers in production and testing systems
- For subplate attachment, mounting hole configuration
 NG10 to ISO 4401-05-05-0-94, NG16 to ISO 4401-07-06-0-94,
 NG25 to ISO 4401-08-07-0-94 and NG32 to
 ISO 4401-10-08-0-94
- Subplates as per catalogue section, NG10 RE 45055, NG16 RE 45057, NG25 RE 45059 and NG32 RE 45060 (order separately)
- Line sockets to DIN 43563-AM6, see catalogue section RE 08008 (order separately)

Ordering data and scope of delivery

Preferred types (available at short notice)


higher flow rates $Q_A : Q_B$.

Type 4WRLE	Material No.
NG10	
4WRLE 10 V-55M 3X/G24 KO / A1M	0 811 404 652
4WRLE 10 V-55M 3X/G24T KO / A1M	0 811 404 659
4WRLE 10 V-55M 3X/G24ET KO / A1M	0 811 404 661
4WRLE 10 V-85M 3X/G24 KO / A1M	0 811 404 653
4WRLE 10 V-85M 3X/G24T KO / A1M	0 811 404 660
4WRLE 10 V-85M 3X/G24ET KO / A1M	0 811 404 662
4WRLE 10 V1-55M 3X/G24 KO / A1M	0 811 404 671
4WRLE 10 V1-85M 3X/G24 KO / A1M	0 811 404 672
4WRLE 10 V1-85M 3X/G24ET KO / A1M	0 811 404 673
4WRLE 10 V-40P 3X/G24 KO / A1M	0 811 404 686
4WRLE 10 V1-40P 3X/G24 KO / A1M	0 811 404 688
4WRLE 10 V-70P 3X/G24 KO / A1M	0 811 404 687
4WRLE 10 V1-70P 3X/G24 KO / A1M	0 811 404 689

Type 4WRLE	Material No.
NG16	
4WRLE 16 V-120M 3X/G24 KO / A1M	0 811 404 250
4WRLE 16 V1-120M 3X/G24 KO / A1M	0 811 404 279
4WRLE 16 V1-120M 3X/G24ET KO / A1M	0 811 404 281
4WRLE 16 V-200M 3X/G24 KO / A1M	0 811 404 251
4WRLE 16 V-200M 3X/G24 KO / F1M	0 811 404 272
4WRLE 16 V1-200M 3X/G24 KO / A1M	0 811 404 280
4WRLE 16 V1-200M 3X/G24ET KO / A1M	0 811 404 282
4WRLE 16 V-90P 3X/G24 KO / A1M	0 811 404 263
4WRLE 16 V1–90P 3X/G24 KO / A1M	0 811 404 265
4WRLE 16 V-150P 3X/G24 KO / A1M	0 811 404 264
4WRLE 16 V1-150P 3X/G24 KO / A1M	0 811 404 266
NG25	
4WRLE 25 V-370M 3X/G24 KO / A1M	0 811 404 430
4WRLE 25 V1-370M 3X/G24 KO / A1M	0 811 404 444
4WRLE 25 V-370M 3X/G24E KO / F1M	0 811 404 570
4WRLE 25 V-300P 3X/G24 KO / A1M	0 811 404 565
NG35	
4WRLE 35 V-1000M 3X/G24 KO / A1M	0 811 404 579

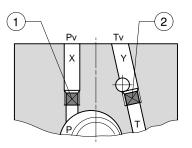
Function, sectional diagram

Servo solenoid valve 4WRLE 10...35

Symbols

A B a 0 b	M: Progressive with fine metering	P: Non-linear, linear (40%)
	~20%	Q

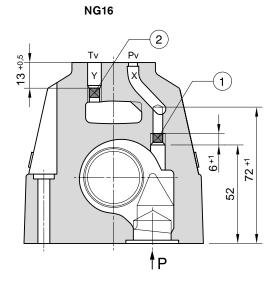
Accessories, not included in scope of delivery


Fastening screws	NG10	4 x M6 x 40, DIN 912-10.9		2910151209
	NG16	2 x M6 x 45, DIN 912-10.9		2910151211
		4 x M10 x 50, DIN 912-10.9		2910151301
	NG25	6 x M12 x 60, DIN 912-10.9		2910151354
	NG35	6 x M20 x 90, DIN 912-10.9	2910151532	
*	Line soc	ckets 6P+PE,	KS	1834482022
	see also	RE 08008	KS	1 834 482 026
0000			MS	1834482023
20.00			MS	1 834 482 024
			KS 90°	1 834 484 252

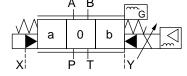
Testing and service equipment

- Test box type VT-PE-TB3, see RE 30065
- Test adapter 6P+PE type VT-PA-2, see RE 30068

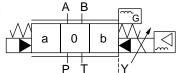
Control oil supply

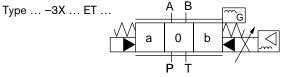


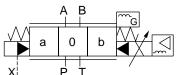
NG10, 25, 35


Plug

12


NG10...25 1 813 464 007 SW 3 NG35 1 813 464 001 SW 4





Type ... -3X ... E ...

Type ... -3X ... T ...

No designation =

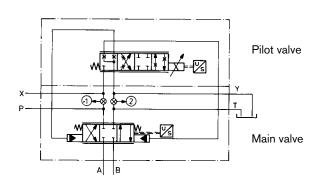
"x" = external, "y" = external

E =

"x" = internal, "y" = external

ET = T =

"x" = internal, "y" = internal "x" = external, "y" = internal


Conversion

The pilot valve can be supplied with oil both via ports X and Y (external) and from the main flow ducts P and T.

In the basic version, the valve is equipped with the plugs (1) and (2), i.e. X and Y are external.

For valve versions with X and/or Y as internal, see ordering overview or carry out the conversion (see diagram above). When the control oil supply or discharge is changed, the part number must also be changed.

Symbol in detail

Important

Hydraulic symbols are largely derived from the symbols of the switching valves. Servo solenoid valves (pilot operated) do not have a closed middle position when switched off! They only perform their function in an active, closed control loop, even when the pilot valve features a relief (fail-safe) 4th symbol. For details on "switch-off behaviour", see Technical data.

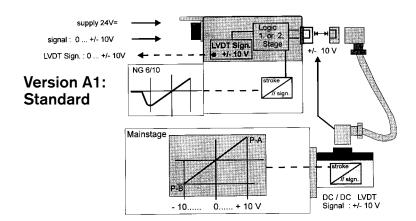
Technical data

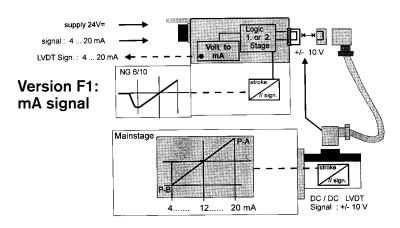
General									
Construction	Spool type valve, pilot operated								
Actuation	Servo solenoid valve NG6 - OBE, with position controller for pilot valve and main stag								
Type of mounting	Subplate, mounting hole configuration NG1035 (ISO 4401)								
Installation position	Optional								
Ambient temperature range	C -20+50								
Weight kg	g NG10 8.7 NG16 10.6 NG25 18.4 NG35 81								
Vibration resistance, test condition	Max. 25 g, shaken in 3 dimensions (24 h)								
Hydraulic (measured with HLP 46, ϑ	l _{oil} = 40 °C ±5 °C)								
Pressure fluid	Hydraulic oil to DIN 51524 535, other fluids after prior consultation								
Viscosity range recommended mm ² /s	s 20100								
max. permitted mm ² /	s 10800								
Pressure fluid temperature range	C -20+70								
Maximum permissible degree of	Class 18/16/13 ¹⁾								
contamination of pressure fluid Purity class to ISO 4406 (c)									
Flow direction	see symbol								
Nominal flow at	NG10 NG16 NG25 NG35								
$\Delta p = 5$ bar per notch ²⁾ //mir	n 40 55 70 85 90 120 150 200 370 1,000								
Max. working pressure ba	Port P, A, B: 350								
Max. pressure ba	Port T, X, Y: 250								
$q_{\sf max}$. I/min	n 170 450 900 3,500								
$\underline{q}_{\mathrm{N}}$ pilot valve I/min	n 4 12 24 40								
Leakage of pilot valve at 100 bar cm³/min	n <180 <300 <500 <900								
Leakage of main stage at 100 bar cm³/min	n <400 <600 <1,000 <1,000 <6,000								
Control oil pressure "pilot stage" ba	r min. 10								
ba	r max. 250								
Static/Dynamic									
Hysteresis 9	6 < 0.1, scarely measurable								
Manufacturing tolerance for q_{max} .	6 ≦10								
Response time for signal 0100%	6 25 26 32 90								
change (at X = 100 bar) ${010\%}$									
Response time for signal 0100%	6 85 80 120 350								
change (at X = 10 bar) $0 \dots 10^{9}$	6 50 30 50 150								
Switch-off behaviour	After electrical switch-off: pilot valve in "fail-safe" Main stage moves to spring-centred "offset position": 1 6% P-B/A-T								
Thermal drift	Zero point displacement <1 % at ΔT = 40 °C								
Zero adjustment	Factory-set ±1 %								
Conformity	C € EN 61000-6-2 EN 61000-6-3								

¹⁾ The purity classes stated for the components must be complied with in hydraulic systems.

Effective filtration prevents problems and also extends the service life of components.

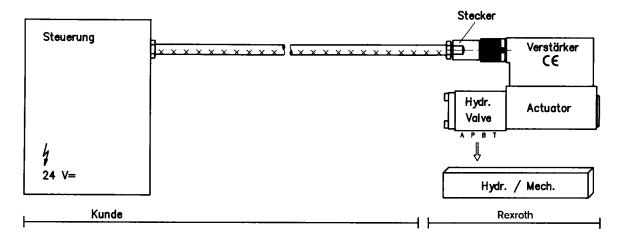
For a selection of filters, see catalogue sections RE 50070, RE 50076 and RE 50081.


²⁾ Flow rate at a different Δp $q_{\rm x} = q_{\rm nom} \cdot \sqrt{\frac{\Delta p_{\rm x}}{5}}$


Important

Pilot operated servo solenoid valves only perform their function in an active closed control loop and do not have a safe basic position when switched off. For this reason, many applications require the use of "additional check valves", which must be taken into account during the On/Off switching sequence.

Technical data


Cylic duration factor %	100
Degree of protection	IP 65 to DIN 40050 and IEC 14434/5
Connection	Line socket 6P+PE, DIN 43563
Power supply Terminal A: Terminal B: 0 V	24 V DC _{nom} min. 21 V DC/max. 40 V DC Ripple max. 2 V DC
Power consumption	Solenoid ☑ 45 mm = 40 VA max.
External fuse	2.5 A _F
Input, "Standard" version Terminal D: $U_{\rm E}$ Terminal E:	Difference amplifier, R_i = 100 Ω 0±10 V 0 V
Input, "mA signal" version Terminal D: I_{D-E} Terminal E: I_{D-E}	Burden, $R_{\rm sh} = 200~\Omega$ 4(12)20 mA Curent loop $I_{\rm D-E}$ feedback
Max. differential input voltage at 0 V	$ \begin{bmatrix} D \to B \\ E \to B \end{bmatrix} $ max. 18 V DC
Test signal, "Standard" version Terminal F: $U_{\rm Test}$ Terminal C:	LVDT 0±10V Reference 0 V
Test signal, "mA signal" version Terminal F: I_{F-C} Terminal C: I_{F-C}	LVDT signal 420 mA at external load 200500 Ω max. 420 mA output Current loop $I_{\text{F-C}}$ feedback
Protective conductor and screen	See pin assignment (installation conforms to CE)
Recommended cable	See pin assignment up to 20 m 7x0.75 mm² up to 40 m 7x1 mm²
Calibration	Calibrated at the factory, see valve performance curve

Connection

For electrical data, see page 6 and Operating Instructions 1819929083

Technical notes on the cable

Version: - Multi-wire cable

 Extra-finely stranded wire to VDE 0295, Class 6

- Protective conductor, green/yellow

Cu braided screen

Types: – e.g. Ölflex-FD 855 <u>C</u>P

(from Lappkabel company)

No. of wires: - Determined by type of valve,

plug types and signal assignment

Cable Ø: − 0.75 mm² to 20 m length

- 1.0 mm² to 40 m length

Outside Ø: - 9.4 ... 11.8 mm - Pg11

- 12.7 ... 13.5 mm - Pg16

Important

Voltage supply 24 V DC nom.,

if voltage drops below 18 V DC, rapid shutdown resembling

"Enable OFF" takes place internally.

In addition, with the "mA signal" version:

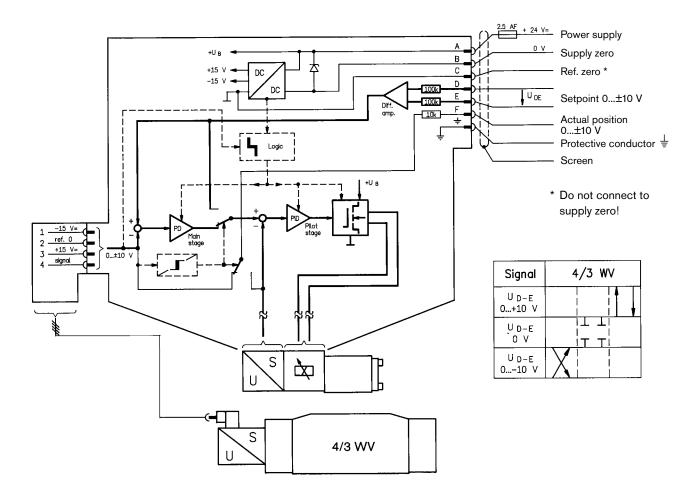
 $I_{D-E} \ge 3 \,\mathrm{mA}$ – valve is active

 $I_{D-E} \le 2 \,\text{mA}$ – valve is deactivated.

Electrical signals emitted via the trigger electronics (e.g. actual

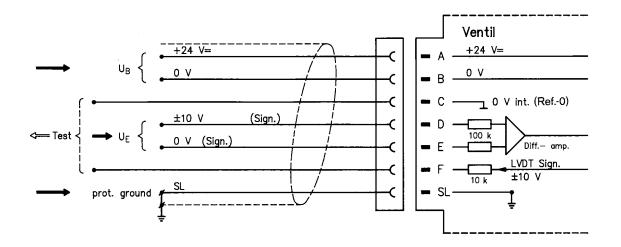
values) must not be used to shut down safety-relevant machine

functions! (See European Standard, "Technical Safety


Requirements for Fluid-Powered Systems and Components –

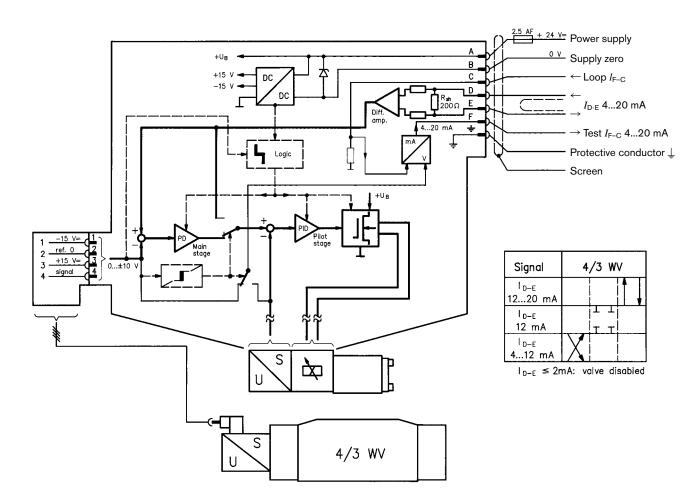
Hydraulics", EN 982!)

On-board trigger electronics

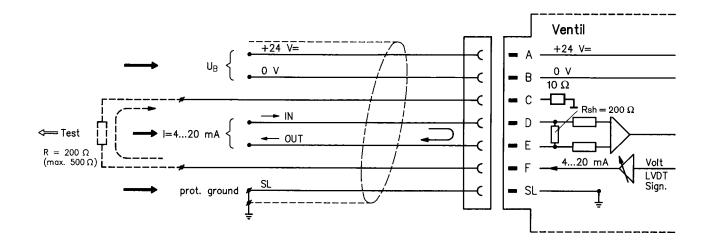

Block diagram/pin assignment

Version A1: $U_{D-E} \pm 10 \text{ V}$

Pin assignment 6P+PE

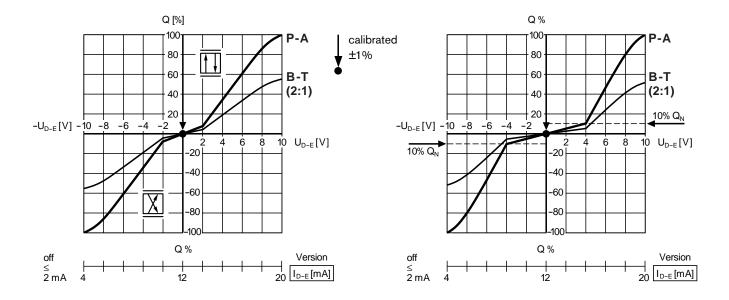

Version A1: $U_{D-E} \pm 10 \text{ V}$ $(R_i = 100 \text{ k}\Omega)$

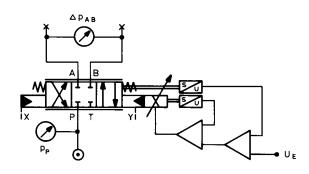
On-board trigger electronics

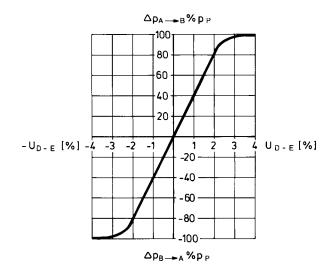

Block diagram/pin assignment

Version F1: I_{D-E} 4...12...20 mA

Pin assignment 6P+PE

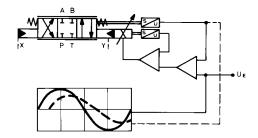

Version F1: I_{D-E} 4...12...20 mA $(R_{\rm sh}=200\,\Omega)$

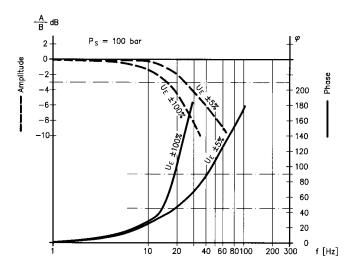

Performance curves (measured with HLP46, $\vartheta_{oil} = 40 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$)

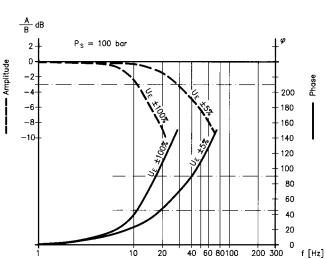

Flow rate - Signal function

$$Q = f(U_{D-E})$$

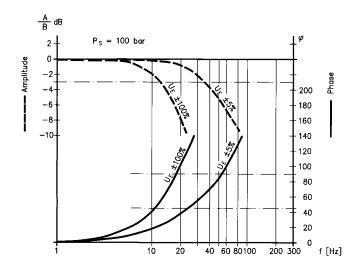
 $Q = f(I_{D-E})$

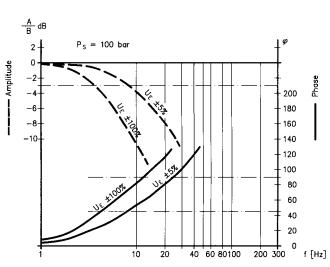

Pressure gain

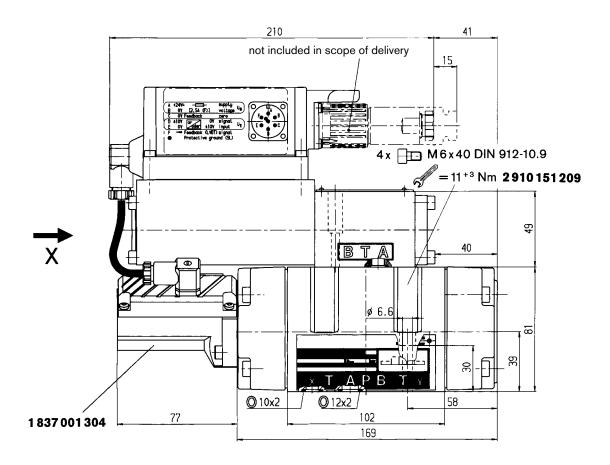



Performance curves (measured with HLP46, $\vartheta_{\text{oil}} = 40\,^{\circ}\text{C} \pm 5\,^{\circ}\text{C}$)

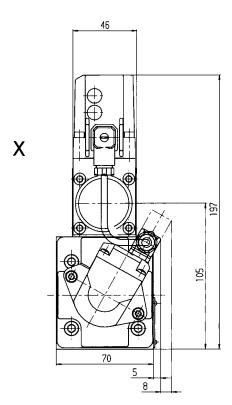
Bode diagrams

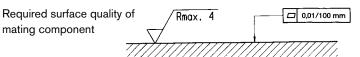


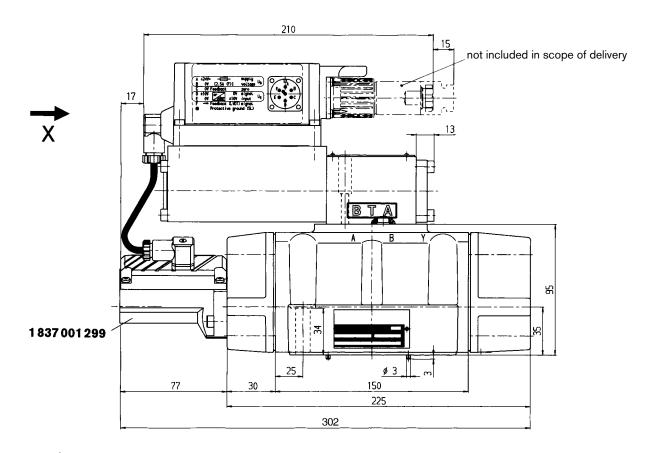




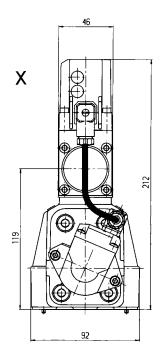
NG25 NG35




Unit dimensions NG10 (nominal dimensions in mm)

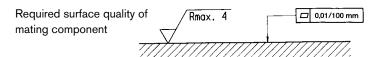

O Set 1817010280

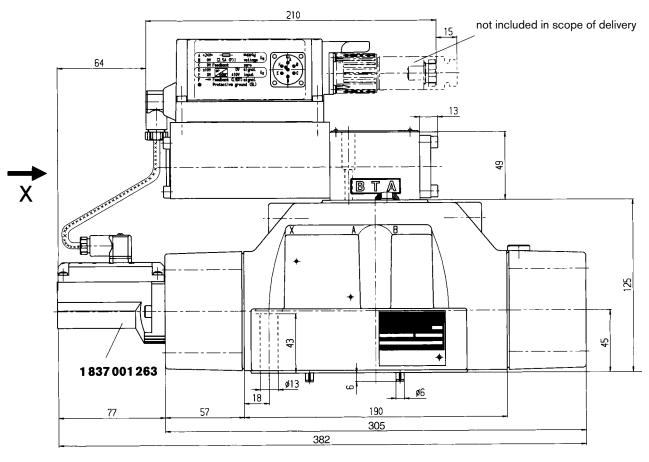
Mounting hole configuration: NG10 (ISO 4401-05-05-0-94), see page 16 For subplates, see catalogue section RE 45055

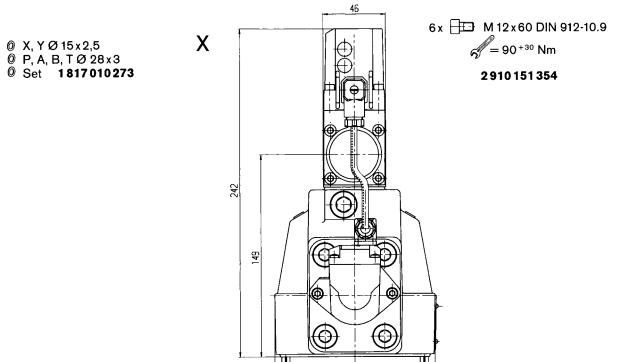


Unit dimensions NG16 (nominal dimensions in mm)

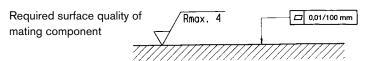
- @ X, Y Ø 9 x 2
- P, A, B, T Ø 23x2,5
 Set 1817010275

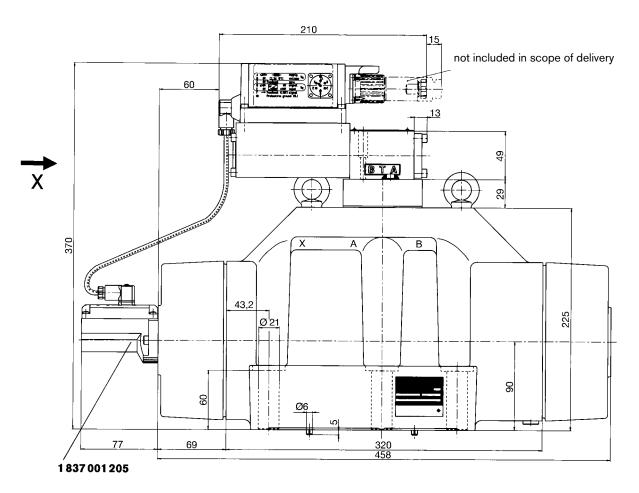

M 6x45 2910151211 2910151301 M 10x50

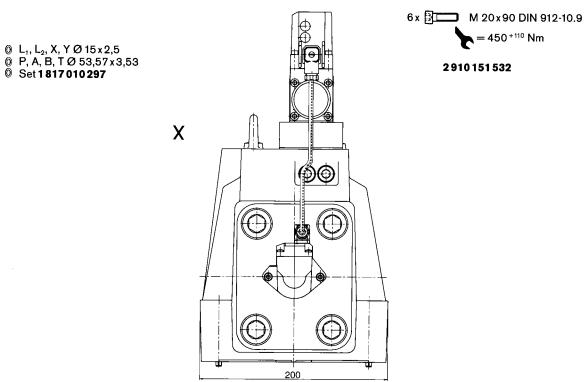

Mounting hole configuration: NG16 (ISO 4401-07-06-0-94),


see page 16

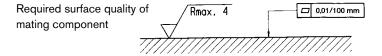
For subplates, see catalogue section RE 45057


Unit dimensions NG25 (nominal dimensions in mm)

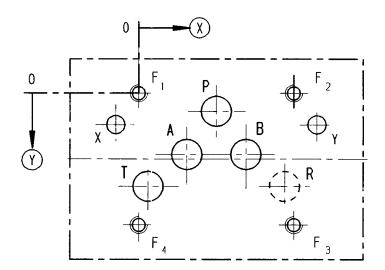



118

Mounting hole configuration: NG25 (ISO 4401-08-07-0-94), see page 17 For subplates, see catalogue section RE 45059

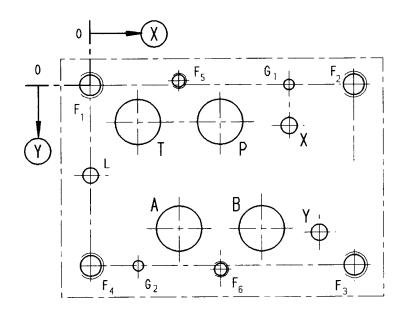


Unit dimensions NG35 (nominal dimensions in mm)



Mounting hole configuration: NG32 (ISO 4401-10-08-0-94), see page 17 For subplates, see catalogue section RE 45060

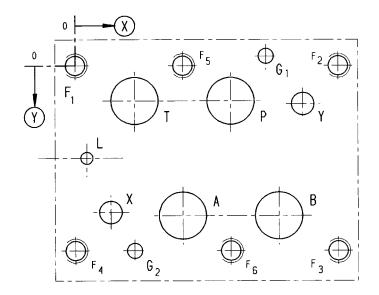
Mounting hole configurations (nominal dimensions in mm)


NG10 - ISO 4401-05-05-0-94

- 1) Deviates from standard
- ²⁾ Thread depth: Ferrous metal 1.5 x Ø* Non-ferrous 2 x Ø
- * (NG10 min. 10.5 mm)

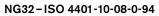
	Р	Α	Т	В	F ₁	F ₂	F ₃	F ₄	Х	Υ	R
⊗	27	16.7	3.2	37.3	0	54	54	0	-8	62	50.8
(V)	6.3	21.4	32.5	21.4	0	0	46	46	11	11	32.5
Ø	10.51)	10.51)	10.51)	10.51)	M6 ²⁾	M6 ²⁾	M6 ²⁾	M6 ²⁾	6.3	6.3	10.51)

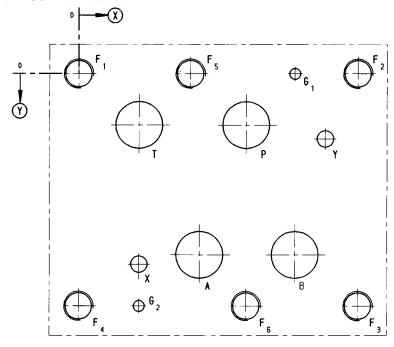
NG16-ISO 4401-07-06-0-94



- 1) Deviates from standard
- ²⁾ Thread depth: Ferrous metal 1.5 x Ø Non-ferrous 2 x Ø

	Р	Α	Т	В	L	Х	Υ	G ₁	G_2	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
⊗	50	34.1	18.3	65.9	0	76.6	88.1	76.6	18.3	0	101.6	101.6	0	34.1	50
(14.3	55.6	14.3	55.6	34.9	15.9	57.2	0	69.9	0	0	69.9	69.9	-1.6	71.5
Ø	201)	201)	201)	201)	6.3	6.3	6.3	4	4	M10 ²⁾	M10 ²⁾	M10 ²⁾	M10 ²⁾	M6 ²⁾	M6 ²⁾


Mounting hole configurations (nominal dimensions in mm)


NG25 - ISO 4401-08-07-0-94

- 1) Deviates from standard
- ²⁾ Thread depth: Ferrous metal 1.5 x Ø Non-ferrous 2 x Ø

	Р	Α	Т	В	L	Х	Υ	G ₁	G ₂	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
※	77	53.2	29.4	100.8	5.6	17.5	112.7	94.5	29.4	0	130.2	130.2	0	53.2	77
(V)	17.5	74.6	17.5	74.6	46	73	19	-4.8	92.1	0	0	92.1	92.1	0	92.1
Ø	25 ¹⁾	25 ¹⁾	25 ¹⁾	25 ¹⁾	11.2	11.2	11.2	7.5	7.5	M12 ²⁾					

- 1) Deviates from standard (NG35)
- ²⁾ Thread depth: Ferrous metal 1.5 x Ø Non-ferrous 2 x Ø

	Р	Α	Т	В	Х	Υ	G ₁	G ₂	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆
(X)	114.3	82.5	41.3	147.6	41.3	168.3	147.6	41.3	0	190.5	190.5	0	76.2	114.3
(A)	35	123.8	35	123.8	130.2	44.5	0	158.8	0	0	158.8	158.8	0	158.8
Ø	481)	481)	481)	481)	11.2	11.2	7.5	7.5	M20 ²⁾					

Notes

Bosch Rexroth AG
Industrial Hydraulics
Zum Eisengießer 1
D-97816 Lohr am Main, Germany
Telefon +49 (0) 93 52 / 18-0
Telefax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© Bosch Rexroth AG reserves all rights, including industrial property rights. We reserve all rights of disposal, such as copying and passing on to third parties.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Notes

Bosch Rexroth AG
Industrial Hydraulics
Zum Eisengießer 1
D-97816 Lohr am Main, Germany
Telefon +49 (0) 93 52 / 18-0
Telefax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© Bosch Rexroth AG reserves all rights, including industrial property rights. We reserve all rights of disposal, such as copying and passing on to third parties.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Notes

Bosch Rexroth AG
Industrial Hydraulics
Zum Eisengießer 1
D-97816 Lohr am Main, Germany
Telefon +49 (0) 93 52 / 18-0
Telefax +49 (0) 93 52 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de

© Bosch Rexroth AG reserves all rights, including industrial property rights. We reserve all rights of disposal, such as copying and passing on to third parties.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.