

Axial piston variable pump A10VO series 52 and 53

RE 92703

Edition: 10.2014 Replaces: 08.2011

Sizes 10 to 100

- Nominal pressure 250 bar
- Maximum pressure 315 bar
- ▶ Open circuit

Features

- ▶ Variable axial piston pump of swashplate design for hydrostatic drives in open circuit.
- The flow is proportional to the drive speed and the displacement.
- ▶ The flow can be infinitely varied by adjusting the swashplate angle.
- Stable storage for long service life
- High permissible drive speed
- Favorable power-to-weight ratio compact dimensions
- Low noise
- Excellent suction characteristics
- Electro-hydraulic pressure control
- Power control
- Electro-proportional swivel angle control
- Short response times

Contents	
Ordering code	2
Hydraulic fluids	5
Operating pressure range	7
Technical data	8
DR - Pressure control	10
DRG – Pressure control remotely operated	11
DRF (DFR) / DRS (DFR1) / DRSC	
Pressure and flow control	12
LA Pressure, flow and power control	14
LA – Variations	15
ED – Electro-hydraulic pressure control	16
ER – Electro-hydraulic pressure control	17
EP - Electro-proportional control	18
EK – Electro-proportional control	
with controller cut-off	19
EP(K).DF / EP(K).DS / EP(K)	
with pressure and flow control	20
EP.ED / EK.ED	
with electro-hydraulic pressure control	21
Dimensions, size 10 to 100	22
Dimensions through drive	54
Overview of attachment options	58
Combination pumps A10VO + A10VO	59
Connector for solenoids	60
Installation instructions	61
Project planning notes	64
Safety instructions	64

04

05

06

07

80

09

10

11

12

LA9D

LA.DG

LA.DS

Ordering code

02

03

01

2

U.	L	02	03	04		UO	Ub		07	Uð		U	9		TO		TT		12
A10\	/(S)	0			1	5x		-	V										
xial _I	oiston	unit								10	18	28	45	60 ¹⁾	63	72	85	100	
01	Swash	plate des	ign, variab	le, nominal	pressur	e 250 bar, n	naximum p	ressure 3	315 bar	•	-	_	-	_	_	_	_	-	A10
										-	•	•	•	•	•	•	•	•	A10
pera	tion m	ode									•								
02	Pump,	open cire	cuit																0
ize (I	NG)																		-
		etric disp	lacement,	see table o	f values	on page 6		<i>,</i> .		10	18	28	45	60	63	72	85	100	1
ontro	ol devi	ces		,						•					•				•
04	Pressu	ire contro	ol	hydraulic						•	•	•	•	•	•	•	•	•	DF
	wit	h flow co	ntrol	hydraulic	X-	Гореп				•	-	•	•	•	-	-	● 3)	-	DF
										-	•	-	-	-	•	•	● ²⁾	•	DF
					X-	T plugged				•	-	•	•	•	-	-	● 3)	-	DFI
							wit	h flushing	g function	-	•	-	-	-	•	•	● ²⁾	•	DR
							witl	nout flush	ing function	•	•	•	•	•	•	•	•	•	DR
					ele	ectrically ov	erridden (negative	control)	-	0	0	0	-	•	•	•	0	EF.C
	pre	ssure cut	-off	hydraulic	re	motely oper	ated			•	•	•	•	•	•	•	•	•	DR
				electric	ne	gative cont	rol	<i>U</i> = 1	2 V		•	•	•	•	•	•	•	•	ED.
								U = 2	4 V	_	•	•	•	•	•	•	•	•	ED.
				electric	рс	sitive contr	ol	<i>U</i> = 1	2 V	-	•	•	•	•	•	•	•	•	ER7
								U = 2	4 V	 -	•	•	•	•	•	•	•	•	ER7
			vith pres-	hydraulic	sta	art of contro	ol fron		35 bar	-	•	•	•	-	•	•	•	•	LAS
	sure cı	ut-off						36 to	70 bar	-	•	•	•	_	•	•	•	•	LA
								71 to	105 bar	-	•	•	•	_	•	•	•	•	LA7
								106 t	o 140 bar	-	•	•	•	-	•	•	•	•	LA

	(negative control)							_					LA.5
Proportional control	electric	positive control											
with pressure contro	d		U = 12 V	-	•	•	•	-	•	•	•	•	EP1D
			U = 24 V	-	•	•	•	-	•	•	•	•	EP2D
with pressure and flo	ow control	X-T open	U = 12 V	-	•	•	•	-	•	•	•	•	EP1DF
(load sensing)			U = 24 V	-	•	•	•	-	•	•	•	•	EP2DF
with pressure and flo	ow control	X-T plugged	U = 12 V	-	•	•	•	-	•	•	•	•	EP1DS
(load sensing)			U = 24 V	-	•	•	•	-	•	•	•	•	EP2DS
with electro-hydrauli	c pressure		U = 12 V	-	•	•	•	-	•	•	•	•	EP1ED
control			U = 24 V	-	•	•	•	-	•	•	•	•	EP2ED

see LA.D

see LA.D

see LA.D

141 to 230 bar

_

•

hydraulic

hydraulic

electrically

overridable

start of control

start of control

start of control

2) Series 53 only with D flange

remotely operated

flow control, X-T

plugged

- 3) Series 52 only with C flange
- 4) See data sheet 92709

An accessory kit with intermediate plate pressure controller can be ordered from Bosch Rexroth under part number R902490825.

Series 52 units are delivered as standard with 60 cm³. Higher values on request

⁵⁾ The following must be taken into account during project planning: Excessive current levels (I > 1,200 mA with 12 V or I > 600 mA with 24 V) to the ER solenoid can result in undesired increase of pressure which can lead to pump or system damage:

⁻ Use I_{max} current limiter solenoids.

⁻ An intermediate-plate pressure controller can be used to protect the pump in the event of overflow.

(01	02	03	04		05	06		07	08	3	0:	9		10		11		12
A1 0	V(S)	0			1	5x			V										
										10	18	28	45	60 ¹⁾	63	72	85	100	
04	Propo	ortional co	ontrol	electric	po	sitive cor	itrol												
	Pre	essure an	d flow con	trol with	X-	Topen		U = 1	2 V	-	•	•	•	-	•	•	•	•	EK1D
	со	ntroller c	ut-off (loac	l sensing)				U = 2	4 V	_	•	•	•	-	•	•	•	•	EK2D
			d flow con		X-	T plugged		U = 1	2 V	_	•	•	•	-	•	•	•	•	EK1D
	co	ntroller c	ut-off (loac	l sensing)				U = 2	4 V		•	•	•	_	•	•	•	•	EK2D
				sure contro	ol			<i>U</i> = 1	2 V		•	•	•	-	•	•	•	•	EK1E
	wi	th contro	ller cut-off					U = 2	4 V		•	•	•	-	•	•	•	•	EK2E
Serie	es.																		
05	Series	s 5, index	2							•	-	•	•	•	-	-	•	-	52 ⁶⁾¹
	Series	s 5, index	3							-	•	•	•	_	•	•	•	•	53 ⁷⁾⁸⁾
Direc	tion of	rotation																	
06	View	on drive s	haft					clockwise											R
								counter cloc	kwise										L
Seali	ng mat	erial																	
07		fluor-cao	utchouc)																٧
Drive	shaft							,											
08		ed shaft		standard	shaft					•	•	•	•	•	•	•	•	•	S
		B92.1a		similar to	shaft "S	" howeve	for high	her input torq	ue	-	•	•	•	•	•	•	-	-	R
				reduced	diameter,	, limited s	uitability	y for through (drive	•	•	0	•	•	•	•	•	•	U
				similar to	shaft "U	", howeve	r for hig	her torque		_	_	0	•	•	•	•	•	•	w
	Parall	el keyed :	shaft DIN 6	885 limited	d suitabil	ity for thro	ough dri	ve		•	•	0	0	-	-	-	-	0	Р
Mour	nting fl	ange								,		•	•						
09		019-2 (IS	O)					2-ho	le	•	-	-	-	-	-	-	-	-	Α
	ISO 3	019-1 (SA	λE)					2-ho	le	•	•	•	•	•	•	•	•	•	С
								4-ho	le	_	-	-	-	•	•	•	● ¹¹⁾	•	D
Work	ing po	rt								•		•	•					•	
10	SAE fl	lange por c fastenin		rear				not for throu	ıgh drive	-	•	•	•	•	•	•	•	•	11
		crasteriii	g till cau	at side, c	pposite			for through o	drive	-	•	•	•	•	•	•	•	•	12
				at side, c	offset 90°			not for throu available only counter-clock rotation	y for	-	-	_	•	-	_	-	_	_	13
	Metri	ic threade	ed port	rear				not for throu	gh drive	•	_		_	_		_	_	_	14

⁶⁾ Control DR, DFR, DFR1, DRG, ED and ER: delivery with nominal sizes 10, 28, 45, 60 and 85¹⁰⁾ only in series 52

 $_{7)}\,$ Control DR, DRF, DRS, DRG, ED and ER: delivery with nominal sizes 18, 63, 72, $85^{9)}$ and 100 only in series 53

⁸⁾ Control EF., LA.., EP.. and EK..: delivery with nominal sizes 18 to 100 only in series 53

⁹⁾ Control DRF and DRS: delivery with nominal size 85 only with D flange in series 53

¹⁰⁾ Control DFR, DFR1: delivery with nominal size 85 only with C flange in series 52

¹¹⁾ Only available in series 53. For controller designation and series assignment, please refer to positions 04, 05, including footnotes.

4 **A10VO series 52 and 53** | Axial piston variable pump Ordering code

01	02	03	04		05	06		07	08	09	10	11	12
A10V(S)	0			/	5x		_	V					

Through drive (for attachment options, see page 37)

11	Flange ISO 3019-1	Hub for s	plined shaft ¹²⁾										
	Diameter	Diameter		10	18	28	45	60 ¹⁾	63	72	85	100	
	without through drive			-	•	•	•	•	•	•	•	•	N00
	82-2 (A)	5/8 in	9T 16/32DP	-	•	•	•	•	•	•	•	•	K01
		3/4 in	11T 16/32DP	-	•	•	•	•	•	•	•	•	K52
	101-2 (B)	7/8 in	13T 16/32DP	-	-	•	•	•	•	•	•	•	K68
		1 in	15T 16/32DP	-	-	-	•	•	•	•	•	•	K04
	127-4 (C)	1 1/4 in	14T 12/24DP	-	-	-	-	•	•	•	•	•	K15
		1 1/2 in	17T 12/24DP	-	-	-	-	-	-	-	•	•	K16
	127-2 (C)	1 1/4 in	14T12/24DP	-	-	-	_	-	-	-	•	•	K07
		1 1/2 in	17T 12/24DP	-	-		-	-	-	-	•	•	K24

Connector for solenoids

12	DEUTSCH – molded connector, 2-pin – without suppressor diode (for electric controls)	-	•	•	•	•	•	•	•	•	Р

• = Available • = On request - = Not available

Note

- ▶ Note the project planning notes on page 64!
- ► Preservation:
 - Up to 12 months as standard
 - Up to 24 months long-term (state in plain text when ordering)

Hydraulic fluids

The A10VO variable pump is designed for operation with HLP mineral oil according to DIN 51524.

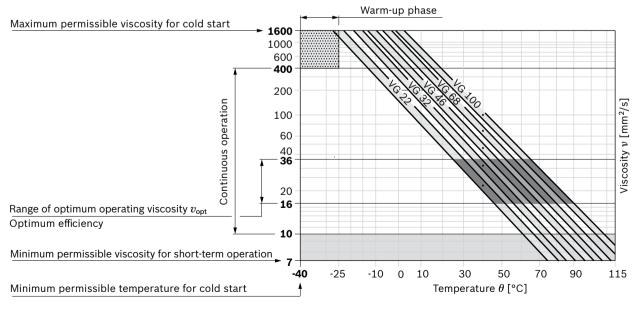
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:

- ▶ 90220: Hydraulic fluids based on mineral oils and related hydrocarbons
- ▶ 90221: Environmentally acceptable hydraulic fluids

Notes on selection of hydraulic fluid

The hydraulic fluid should be selected such that the operating viscosity in the operating temperature range is within the optimum range (ν_{opt} : see selection diagram).

Note


At no point of the component may the temperature be higher than 115 °C. The temperature difference specified in the table is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact the responsible member of staff at Bosch Rexroth.

Viscosity and temperature of hydraulic fluids

	Viscosity	Temperature	Comment
Cold start	$v_{\text{max}} \le 1600 \text{ mm}^2/\text{s}$	θ _{St} ≥ -40 °C	$t \le 1$ min, without load ($p \le 30$ bar), $n \le 1000$ rpm
Permissible tempera	ature difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	v < 1600 to 400 mm ² /s	θ = -40 °C to -25 °C	Note the detailed information on operation with low temperatures, see data sheet 90300-03-B.
Continuous operation	$v = 400 \text{ to } 10 \text{ mm}^2/\text{s}$		This corresponds, for example on the VG 46, to a temperature range of +5 °C to +85 °C (see selection diagram page 5)
		θ = -25 °C to +110 °C	measured at port ${\bf L}$ Note the permissible temperature range of the shaft seal $(\Delta T = {\bf approx.} \ 5 \ {\bf K} \ {\bf between} \ {\bf the} \ {\bf bearing/shaft} \ {\bf seal} \ {\bf and} \ {\bf port} \ {\bf L})$
	$v_{\rm opt}$ = 36 to 16 mm ² /s		Range of optimum operating viscosity and efficiency
Short-term operation	$v_{min} \ge 7 \text{ mm}^2/\text{s}$		<i>t</i> < 1 min, <i>p</i> < 0.3 ⋅ <i>p</i> _{nom}

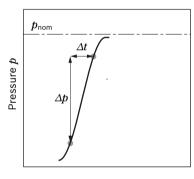
▼ Selection diagram

6 **A10VO series 52 and 53** | Axial piston variable pump Ordering code

Filtration of the fluid

The finer the filtration, the better the hydraulic fluid cleanliness level, and the longer the service life of the axial piston unit.

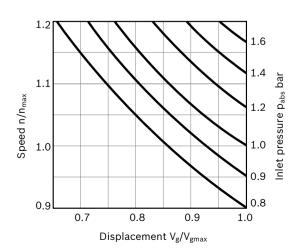
A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.

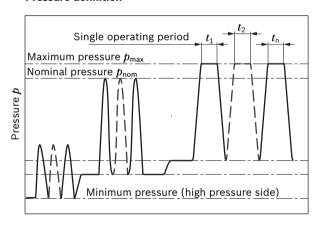

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

Please contact us if the above classes cannot be observed.

Operating pressure range

Pressure at working port B		Definition
Nominal pressure p_{nom}	250 bar absolute	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}	315 bar absolute	The maximum pressure corresponds the maximum operating pressure within the
Single operating period	2.5 ms	single operating period. The sum of the single operating periods must not exceed
Total operating period	300 h	the total operating period.
Minimum pressure $p_{\text{B abs}}$ (high pressure side)	10 bar absolute	Minimum pressure on the high-pressure side (B) which is required in order to prevent damage to the axial piston unit.
Rate of pressure change $R_{ m A\ max}$	16000 bar/s	Maximum permissible rate of pressure build-up and pressure reduction during a pressure change over the entire pressure range.
Pressure at suction port S (Inlet)		
Minimum pressure Standard $p_{\text{S min}}$	0.8 bar absolute	Minimum pressure at suction port S (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the speed and displacement of the axial piston unit.
Maximum pressure $p_{\text{S max}}$	5 bar absolute	
Case drain pressure at port L ₁ , L ₂		
Maximum pressure $p_{\text{L max}}$	2 bar absolute	Maximum 0.5 bar higher than inlet pressure at port S , but not higher than $p_{\rm L\ max}$. A case drain line to the reservoir is required.


▼ Rate of pressure change $R_{A \text{ max}}$


Time t

▼ Maximum permissible speed (limit speed)

Permissible speed by increasing inlet pressure p_{abs} at suction opening **S** or at $V_g \le V_{gmax}$

▼ Pressure definition

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Note

Operating pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.

Technical data

Size		NG		10	18	28	45	60 ¹⁾	63 ²⁾	72	85	100
Displacement, ged	ometric, per revolution	$V_{g\;max}$	cm ³	10.5	18	28	45	60	63	72	85	100
Maximum	at $V_{g\;max}$	n_{nom}	min ⁻¹	3600	3300	3000	2600 ⁴⁾	2700	2600	2600	2500	2300
rotational speed ³⁾	at $V_{\rm g}$ < $V_{\rm g\;max}$	n_{max} perm	min ⁻¹	4320	3960	3600	3120	3140	3140	3140	3000	2500
Flow	at n_{nom} and V_{gmax}	q_{v}	l/min	37	59	84	117	156	163	187	212	230
	at <i>n</i> _E = 1500 rpm	$q_{\sf vE}$	l/min	15	27	42	68	90	95	108	128	150
Power	at n_{nom} , $V_{\text{g max}}$ and Δp = 250 bar	P	kW	16	25	35	49	65	68	77	89	96
	at n_E = 1500 rpm	P_E	kW	7	11	18	28	37	39	45	53	62
Torque	at $V_{\rm g\ max}$ and Δp = 250 bar	T	Nm	42	71	111	179	238	250	286	338	398
	at $V_{\rm g\ max}$ and Δp = 100 bar	T	Nm	17	29	45	72	95	100	114	135	159
Rotary stiffness	S	c	Nm/rad	9200	11000	22300	37500	65500	65500	65500	143000	143000
of drive shaft	R	c	Nm/rad	-	14800	26300	41000	69400	69400	69400	_	_
	U	c	Nm/rad	6800	8000	-	30000	49200	49200	49200	102900	102900
	W	c	Nm/rad	_	-	-	34400	54000	54000	54000	117900	117900
	Р	c	Nm/rad	10700	13100	-	_	_	_	_	_	_
Moment of inertia	a for rotary group	$J_{\sf TW}$	kgm²	0.0006	0.0009	0.0017	0.003	0.0056	0.0056	0.0056	0.012	0.012
Maximum angula	r acceleration ⁵⁾	α	rad/s²	8000	6800	5500	4000	3300	3300	3300	2700	2700
Case volume		V	L	0.2	0.25	0.3	0.5	0.8	0.8	0.8	1	1
Weight without th	rough drive (approx.)	m	kg	8	11.5	15	18	22	22	22	36	36
Weight with thro	ugh drive (approx.)			_	13	18	24	28	28	28	45	45

Determining	the ope	rating characteristi	cs	
Flow	$q_{\sf v}$	$= \frac{V_{\rm g} \times n \times \eta_{\rm v}}{1000}$		[I/min]
Torque	Т	$= \frac{V_{\rm g} \times \Delta p}{20 \times \pi \times \eta_{\rm mh}}$		[Nm]
Power	P	$=\frac{2\pi\times T\times n}{60000}=$	$\frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	– [kW]
Key				
V_{g}	=	Displacement per r	evolution [cm	3]
Δp	=	Differential pressur	re [bar]	
n	=	Rotational speed [r	rpm]	
η_{v}	=	Volumetric efficienc	СУ	
η_mh	=	Mechanical-hydrau	lic efficiency	
η_{t}	=	Total efficiency ($\eta_{\rm t}$	$= \eta_{v} \times \eta_{mh}$	

Note

- ► Theoretical values, without efficiency and tolerances; values rounded.
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.
- ► Transport and storage
 - $-\theta_{\min} \ge -50 \, ^{\circ}\text{C}$
 - θ_{opt} = +5 °C to +20 °C

¹⁾ Only series 52

²⁾ Only series 53

³⁾ The values are applicable:

⁻ At absolute pressure p_{abs} = 1 bar at suction port **S**

[–] For the optimal viscosity range of $v_{\rm opt}$ = 36 to 16 mm²/s

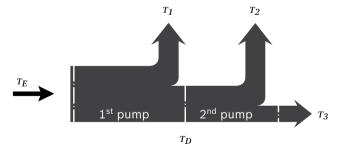
⁻ For hydraulic fluid based on mineral oils

⁴⁾ Please contact us regarding higher speeds

⁵⁾ The scope of application lies between the minimum necessary and the maximum permissible drive speeds. It applies for external stimuli (e. g. engine 2 to 8 times rotary frequency, cardan shaft twice the rotary frequency). The limiting value is only valid for a single pump. The loading capacity of the connecting parts must be taken into account.

Permissible radial and axial forces on the drive shaft

Size		NG		10	18	28	45	60/63	72	85	100
Radial force maximum at a/2	a/2 a/2	$\pm F_{q\;max}$	N	250	350	1200	1500	1700	1500	2000	2000
Axial force maximum	± Fax◀ · · · · ·	+ F _{ax max}	N	400	700	1000	1500	2000	1500	3000	3000


Note

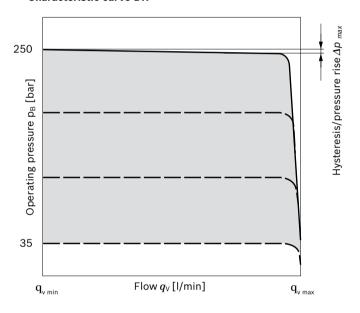
► The values given are maximum values and do not apply to continuous operation. For drives with radial loading (pinion, V-belt drives), please contact us!

Permissible input and through-drive torques

Size			10	18	28	45	60/63	72	85	100
Torque at $V_{g max}$ and $\Delta p = 250 \text{ bar}^{1)}$ T_{max} Nm		42	71	111	179	250	321	338	398	
Input torque at drive shaft, maximum ²⁾										
S	T_{Emax}	Nm	126	124	198	319	630	630	1157	1104
	Ø	in	3/4	3/4	7/8	1	1 1/4	1 1/4	1 1/2	1 1/2
R	T_{Emax}	Nm	_	160	250	400	650	650	_	-
	Ø	in	_	3/4	7/8	1	1 1/4	1 1/4	_	-
U	T_{Emax}	Nm	60	59	105	188	306	306	628	595
	Ø	in	5/8	5/8	3/4	7/8	1	1	1 1/4	1 1/4
W	T_{Emax}	Nm	_	-	140	220	396	383	650	636
	Ø	in	_	-	3/4	7/8	1	1	1 1/4	1 1/4
P	T_{Emax}	Nm	90	88	137	200	_	-	_	857
	Ø	mm	18	18	22	25	_	-	_	40
Maximum through-drive torque										
S	T_{Dmax}	Nm	-	108	160	319	484	484	698	778
R	T_{Dmax}	Nm	_	120	176	365	484	484	_	-
U	T_{Dmax}	Nm	_	59	105	188	306	306	628	595
W	T_{Dmax}	Nm	_	_	140	220	396	383	650	636
P	T_{Dmax}	Nm	_	88	137	200	_	_	_	778

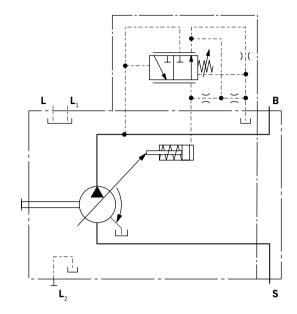
▼ Distribution of torques

Torque at 1st pump	T_1		
Torque at 2nd pump	T_2		
Torque at 3rd pump	T_3		
Input torque	T_E	=	$T_1 + T_2 + T_3$
	T_E	<	T_{Emax}
Through-drive torque	T_D	=	$T_2 + T_3$
	T_D	<	T_{Dmax}


- 1) Without considering efficiency
- 2) For drive shafts with no radial force

DR - Pressure control

The pressure control limits the maximum pressure at the pump outlet within the control range of the variable pump. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the operating pressure exceeds the pressure setting at the pressure valve, the pump will regulate to a smaller displacement to reduce the control differential.


- ▶ Basic position in depressurized state: $V_{\rm g\;max}$.
- ► Setting range¹⁾ for pressure control 35 to 250 bar. Standard is 250 bar.

▼ Characteristic curve DR

Characteristic curve valid for n_1 = 1500 rpm and t_{fluid} = 50 °C.

▼ Circuit diagram: DR

Controller data

NG		10	18	28	45	60 63	72	85	100
Pressure increase	∆ <i>p</i> [bar]	6	6	6	6	8	8	12	14
Hysteresis and repeat- ability	<i>∆p</i> [bar]	maximum 3							
Control fluid consumption	l/min	max	imum	appro	ox. 3				

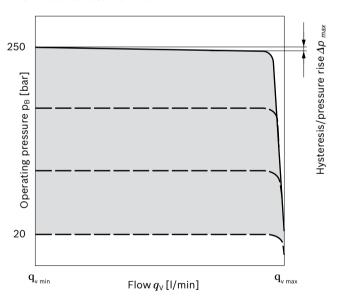
¹⁾ In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded. The range of possible settings at the valve is higher.

DRG - Pressure control remotely operated

For the remote-controlled pressure control, the target pressure can be set using a separately arranged pressure relief valve. Pressure control DR see page 10.

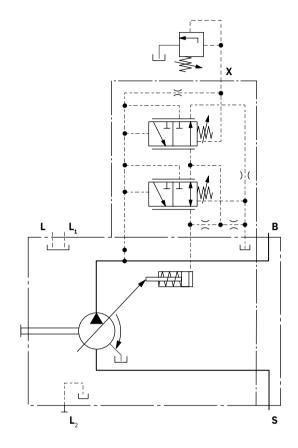
A pressure relief valve can be externally piped to port **X** for remote setting of pressure below the setting of the DR control valve spool. This relief valve is not included in the delivery contents of the pump.

The differential pressure at the DRG control valve is set as standard to 20 bar. This results in a pilot oil flow to the relief valve of approx. 1.5 l/min at port **X**. If another setting is required (range from 10-22 bar) please state in clear text. As a separate pressure relief valve we can recommend:


DBDH 6 (hydraulic) to RE 25402 or

DBETR-SO 381 with orifice \emptyset 0.8 mm in P (electric) to RF 29166

The max. length of piping should not exceed 2 m.


- ▶ Basic position in depressurized state: $V_{\rm g\ max}$.
- ► Setting range¹⁾ for pressure control 20 to 250 bar. Standard is 250 bar.

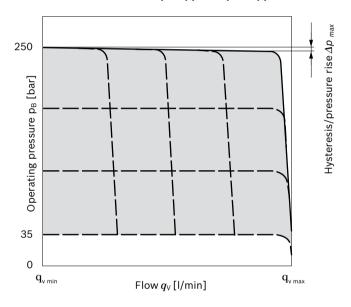
▼ Characteristic curve DRG

Characteristic curve valid at n_1 = 1500 rpm and t_{fluid} = 50 °C.

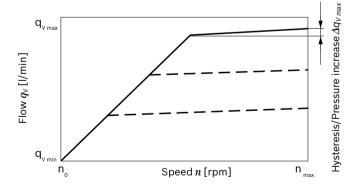
▼ Circuit diagram DRG

Controller data

NG		10	18	28	45	60 63	72	85	100
Pressure increase	∆ <i>p</i> [bar]	6	6	6	6	8	8	12	14
Hysteresis and repeat- ability	<i>∆p</i> [bar]	max	imum	3					
Control fluid consumption	l/min	max	imum	appro	x. 4.5				


In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded. The range of possible settings at the valve is higher.

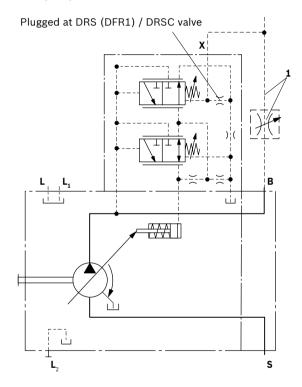
DRF (DFR) / DRS (DFR1) / DRSC - Pressure and flow control


In addition to the pressure control function (see page 10), a variable orifice (e.g. directional valve) is used to adjust the differential pressure upstream and downstream of the orifice. This is used to control the pump flow. The pump flow is equal to the actual required flow by the consumer, regardless of changing pressure levels. The pressure control overrides the flow control function.

- ▶ Basic position in depressurized state: $V_{g \text{ max}}$.
- ► Setting range¹⁾ for pressure control 35 to 250 bar. Standard is 250 bar.

▼ Characteristic curve DRF (DFR) / DRS (DFR1) / DRSC

▼ Characteristic curve at variable speed



Characteristic curves valid for n_1 = 1500 rpm and t_{fluid} = 50 °C.

Possible connections at port **B** (not included in the delivery contents)

LS mobile control blocks	Data sheets
M4-12	64276
M4-15	64283
LUDV mobile control blocks	
M6-15	64284
M7-22	64295

▼ DRF (DFR) schematic

1 The metering orifice (control block) and the line is not included in the delivery contents.

Note

The DRS (DFR1) and DRSC valve versions have no pilot line between **X** and the reservoir.

Unloading the LS-pilot line must be possible in the valve system.

Because of the flushing function sufficient unloading of the flow control in DRS (DFR1) control valve **X**-line must also be provided.

If the unloading of the ${\bf X}$ line does not have to be guaranteed, the DRSC control valve must be used.

For further information see page 13

In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded. The range of possible settings at the valve is higher.

Differential pressure Δp :

► Standard setting: 14 to 22 bar.

If another setting is required, please state in clear text. Relieving the load on port \mathbf{X} to the reservoir results in a zero stroke ("standby") pressure which lies about 1 to 2 bar higher than the differential pressure Δp). No account is taken of system influences.

Controller data

- ▶ DR Pressure control data see page 10.
- ► Maximum flow deviation measured at drive speed n = 1500 rpm.

NG		10	18	28	45	60 63	72	85	100
Flow deviation	$\Delta q_{ m vmax}$ [l/min]	0.5	0.9	1.0	1.8	2.5	2.5	3.1	3.1
Hysteresis and repeat- ability	<i>∆p</i> [bar]	max	imum	3					
Control fluid consumption	l/min			appr			•	•	

LA... - Pressure, flow and power control

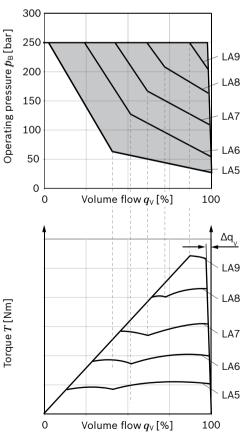
Pressure control equipped as DR(G), see page 10 (11). Equipment of the flow control like DRS (DFR1), see page 12. In order to achieve a constant drive torque with varying operating pressures, the swivel angle and with it the volume flow from the axial piston pump is varied so that the product of flow and pressure remains constant. Flow control is possible below the power control curve. When

ordering please state the power characteristics to be set ex works in clear text, e.g. 20 kW at 1500 rpm.

Control data

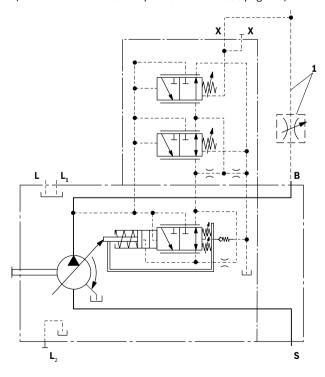
- ► For technical data of pressure control DR see page 10.
- ► For technical data of flow control FR see page 12.
- ► Control fluid consumption max. approx. 5.5 l/min

	Torque T [Nm] for nominal size								
Start of control	18	28	45	63	72	85	100	Order code	
10 to 35 bar	3.8 - 12.1	6 – 19	10 - 30	15 – 43	17 - 49.2	20 – 57	24 - 68	LA5	
36 to 70	12.2 - 23.3	19.1 – 36	30.1 – 59	43.1 - 83	49.3 – 94.9	57.1 – 112	68.1 – 132	LA6	
71 to 105	23.4 - 33.7	36.1 – 52	59.1 – 84	83.1 – 119	95.0 - 136.0	112.1 – 160	132.1 – 189	LA7	
106 to 140	33.8 – 45	52.1 – 70	84.1 – 112	119.1 – 157	136.1 - 179.4	160.1 – 212	189.1 – 249	LA8	
141 – 230	45.1 – 74.8	70.1 – 117	112.1 – 189	157.1 – 264	179.5 – 301.7	212.1 – 357	249.1 – 419	LA9	


Conversion of the torque values in power [kW]

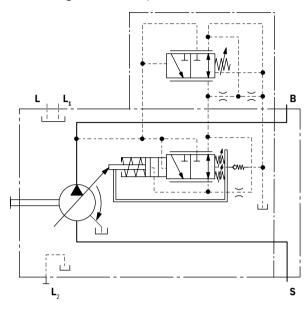
$$P = \frac{T}{6.4}$$
 [kW] (at 1500 rpm)

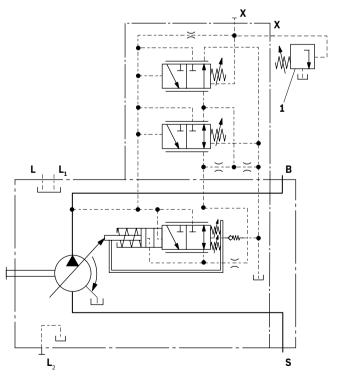
$$P = \frac{2 \times 1 \times 11}{60000} [kW]$$


(rotational speeds, see table on page 8)

▼ Characteristic curve LA.DS

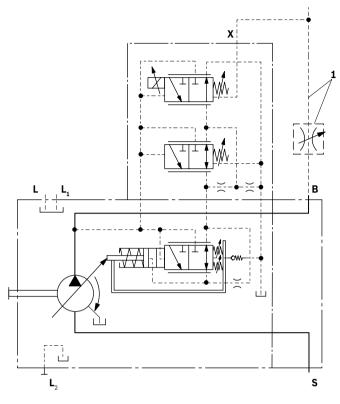
▼ Circuit diagram LA.DS


(for further combination options with LA.. see page 15)


1 The metering orifice (control block) and the line is not included in the delivery contents.

LA... - Variations

▼ Circuit diagram LA.D with pressure cut-off



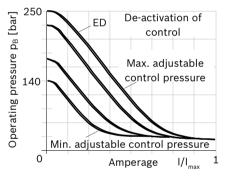
▼ Circuit diagram LA.DG with pressure cut-off, remotely operated

1 The metering orifice (control block) and the line is not included in the delivery contents.

▼ Circuit diagram LA.S with separate flow control

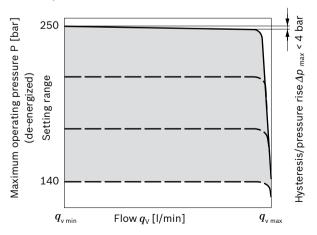
1 The metering orifice (control block) and the line is not included in the delivery contents.

ED - Electro-hydraulic pressure control

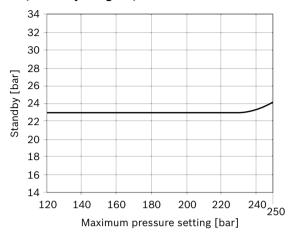

The ED valve is set to a certain pressure by a specified variable solenoid current.

When a change is made at the consumer (load pressure), the position of the control piston will shift.

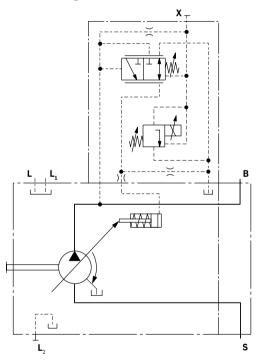
This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level. The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.


As the solenoid current signal drops towards zero, the pressure will be limited to p_{max} by an adjustable hydraulic pressure cut-off (secure fail safe function in case of a loss of power, e.g. for fan drives). The response time characteristic curve of the ED-control was optimized for the use as a fan drive system. When ordering, specify the type of application in clear text.

▼ Static current-pressure characteristic curve ED (negative characteristic curve measured with pump in zero stroke)


► Hysteresis static < 3 bar.

▼ Flow-pressure characteristic curve



- ► Characteristic curves valid for n_1 = 1500 rpm and t_{fluid} = 50 °C.
- ▶ Pilot fluid consumption: 3 to 4.5 l/min.
- ► Standby standard setting 23 bar. Other values on request.

▼ Influence of the pressure setting on standby (maximally energized)

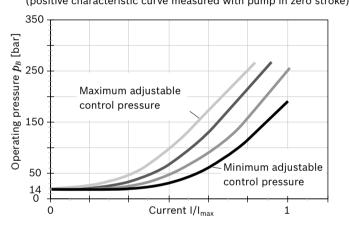
▼ Circuit diagram ED71/ED72

Technical data, solenoid	ED71	ED72			
Voltage	12 V (±20%)	24 V (±20%)			
Control current					
Start of control at $p_{\rm min}$	100 mA	50 mA			
End of control at p_{max}	1200 mA	600 mA			
Limiting current	1.54 A	0.77 A			
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω			
Dither frequency	100 to	100 to			
	200 Hz	200 Hz			
Actuated time 100% 100%					
Type of protection: see connector version page 60					

Operating temperature range at valve -20 °C to +115 °C

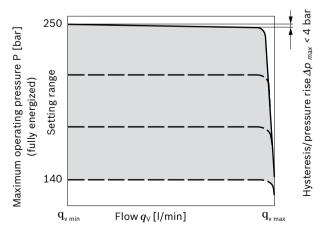
ER - Electro-hydraulic pressure control

The ER valve is set to a certain pressure by a specified variable solenoid current.

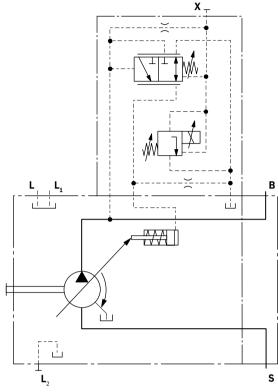

When a change is made at the consumer (load pressure), the position of the control piston will shift.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level. The pump thus only delivers as much hydraulic fluid as the consumers can take. The desired pressure level can be set steplessly by varying the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to p_{min} (stand by).


Observe the project planning notes on page 2.

▼ Static current-pressure characteristic curve ER (positive characteristic curve measured with pump in zero stroke)


- Hysteresis static current-pressure characteristic curve < 3 bar.
- ▶ Influence of pressure setting on stand-by ± 2 bar

▼ Flow-pressure characteristic curve

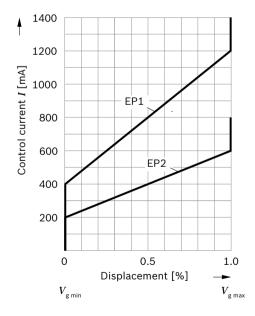
- Characteristic curves valid for n₁ = 1500 rpm and t_{fluid} = 50 °C.
- ▶ Pilot fluid consumption: 3 to 4.5 l/min.
- ▶ Standby standard 14 bar. Other values on request.

▼ Circuit diagram ER71/ER72

Technical data, solenoid	ED71	ED72					
Voltage	12 V (±20%)	24 V (±20%)					
Control current							
Start of control at p_{min}	100 mA	50 mA					
End of control at p_{max}	1200 mA	600 mA					
Limiting current	1.54 A	0.77 A					
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω					
Dither frequency	100 to	100 to					
	200 Hz	200 Hz					
Actuated time	Actuated time 100% 100%						
Type of protection: see connector version page 60							
Operating temperature range at valve -20 °C to +115 °C							

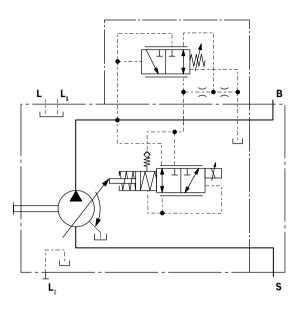
EP - Electro-proportional control

Electro-proportional control makes a stepless and reproducible setting of the pump displacement possible directly via the swashplate. The control force of the control piston is applied by a proportional solenoid. The control is proportional to the current (for start of control, see table right). In a depressurized state, the pump is swiveled to its initial position ($V_{g\ max}$) by an adjusting spring. If the operating pressure exceeds 14 bar, the pump will swivel from $V_{g\ max}$ to $V_{g\ min}$ without control by the solenoid (control current < start of control). With a minimum swivel angle $V_{g\ min}$ and de-energized EP solenoids, a minimum pressure of 10 bar must be maintained, or alternatively a minimum amount of 5% of the displacement.


A PWM signal is used to control the solenoid.

EP.D: The pressure control regulates the pump displacement back to $V_{g\ min}$ after the set target pressure has been reached.

We recommend the valve with flushing function for the EP.D control variant. Please contact us.


A minimum operating pressure of 14 bar is needed for control. The necessary control fluid is taken from the high pressure.

▼ Characteristic curve EP1/2 Hysteresis < 5%

- Hysteresis static current-pressure characteristic curve3 bar.
- ► Influence of pressure setting on stand-by ± 2 bar.

▼ Circuit diagram EP.D

Technical data, solenoid	EP1	EP2				
Voltage	12 V (±20%)	24 V (±20%)				
Control current						
Beginning of control at $V_{ m gmin}$	400 mA	200 mA				
End of control at $V_{g\;max}$	1200 mA	600 mA				
Limiting current	1.54 A	0.77 A				
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω				
Dither frequency	100 to	100 to				
	200 Hz	200 Hz				
Actuated time 100% 100%						
Type of protection: see connector version page 60						
Operating temperature range at valve -20 °C to +115 °C						

Note!

The spring return at the controller is not a safety device The controller may block in an undefined position due to contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). The volume flow of the axial piston unit will then no longer follow the commands of the operator.

Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e. g. immediate stop)

EK - Electro-proportional control with controller cut-off

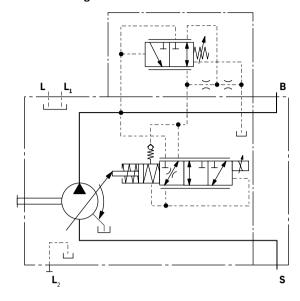
Variant EK... is based completely on the variant EP... (see page 18).

In addition to the electro-proportional control function, a controller cut-off is integrated in the electric characteristic curve. The pump then swivels to $V_{g\ max}$ if the pilot signal is lost (e.g., cable break) and then if needed works with the DRF settings if necessary (see page 12). The controller cut-off is only intended for short-term use and not for permanent use if the control signal is lost. If the control signal is lost, the pump swivel times will be increased by the EK valve

A PWM signal is used to control the solenoid.

A minimum operating pressure of 50 bar is needed for electroproportional control with controller cut-off. For lower pressures, a pilot signal of > 500 mA (EK2) or > 1,000 mA (EK1) is required in order to avoid undesired controller cut-off. The necessary control fluid is taken from the high pressure.

The $V_{g \, max}$ position is maintained by the force of the adjusting spring. To overcome the force of this spring, the solenoid must be subjected to excessive current (I_{res}). We recommend the valve with flushing function for the EK.D control variant. Please contact us.


Observe the instructions regarding the project design on page 2

▼ Characteristic curve EK1/2 Hysteresis < 5%

- Hysteresis static current-pressure characteristic curve
 3 bar.
- ▶ Influence of pressure setting on stand-by ± 2 bar.
- ► For changes in current, ramp times of > 200 ms must be observed.

▼ Circuit diagram EK.DF

Technical data, solenoid	EK1	EK2
Voltage	12 V (±20%)	24 V (±20%)
Control current		
Beginning of control at $V_{ m g\ min}$	400 mA	200 mA
End of control at $V_{ m g\ max}$	1200 mA	600 mA
Limiting current	1.54 A	0.77 A
Nominal resistance (at 20 °C)	5.5 Ω	22.7 Ω
Dither frequency	100 to	100 to
	200 Hz	200 Hz
Actuated time	100%	100%

Type of protection: see connector version page 60

Operating temperature range at valve -20 °C to +115 °C

	EK1	EK2
I _{min} [mA]	400	200
I _{max} [mA]	1200	600
I _{off} [mA]	< 300	< 150
I _{res} [mA]	> 1200	> 600

Note!

The spring return at the controller is not a safety device The controller may block in an undefined position due to contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). The volume flow of the axial piston unit will then no longer follow the commands of the operator.

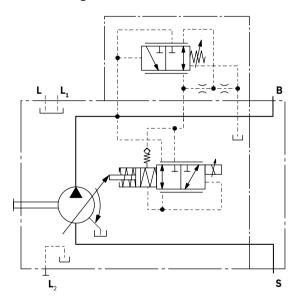
Check whether your application requires that remedial measures be taken on your machine in order to bring the driven consumer into a safe position (e. g. immediate stop)

EP(K).DF / EP(K).DS / EP(K) - with pressure and flow control

A hydraulic pressure flow control is superimposed on the electro-proportional control.

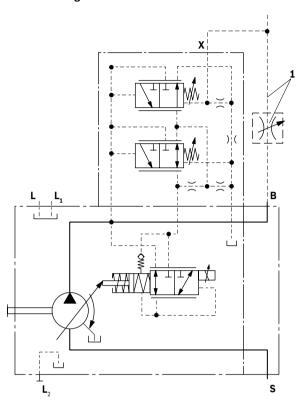
The pressure control regulates the pump displacement back to $V_{g\,min}$ after the set target pressure has been reached.

This function is super-imposed on the EP or EK control, i.e. the control-current dependent function is executed below the target pressure.

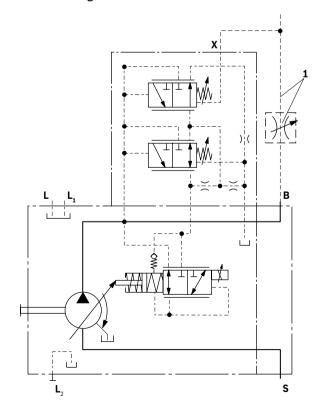

Setting range from 20 to 250 bar. For the pressure flow control, see page 12.

Pressure control has priority over electro-proportional control and flow control.

With flow control, the pump flow can be influenced in addition to pressure control. The pump flow is thus equal to the actual amount of hydraulic fluid required by the consumer. This is achieved using the differential pressure at the consumer (e.g. orifice).


The EP.DS or EK.DS version has no connection between X and the reservoir (load sensing). Please refer to the notes on page 12.

▼ Circuit diagram EP.D



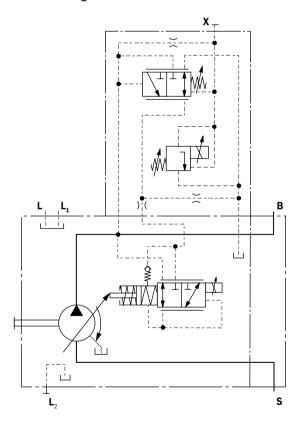
1 The metering orifice (control block) and the line is not included in the delivery contents.

▼ Circuit diagram EP.DF

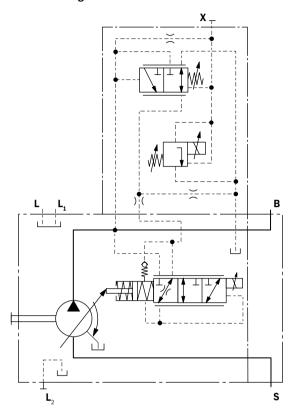
▼ Circuit diagram EP.DS

EP.ED / EK.ED - with electro-hydraulic pressure control

The ED valve is set to a certain pressure by a specified variable solenoid current.

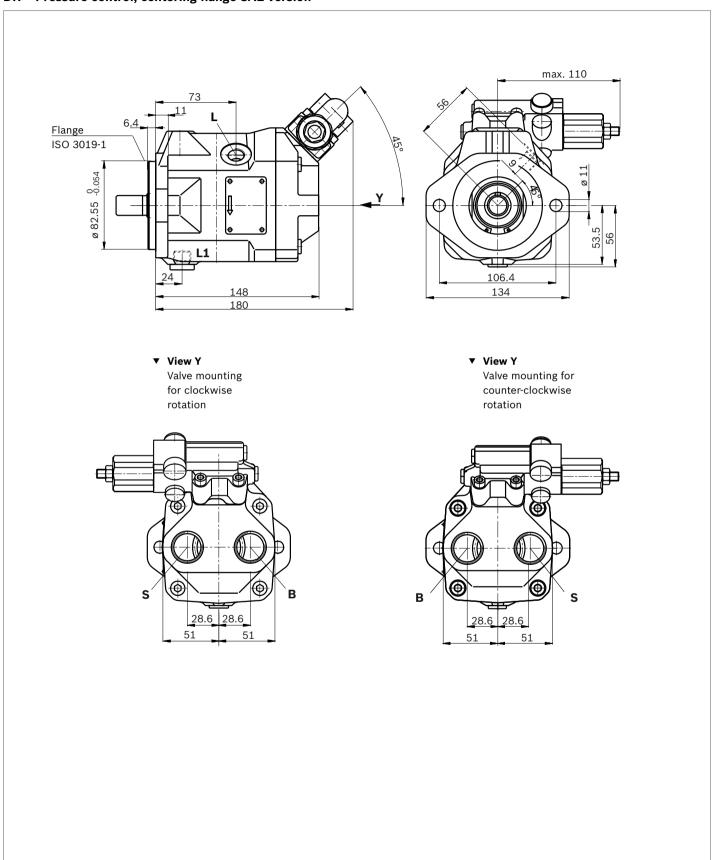

When a change is made at the consumer (load pressure), the position of the control piston will shift.

This causes an increase or decrease in the pump swivel angle (flow) in order to maintain the electrically set pressure level.

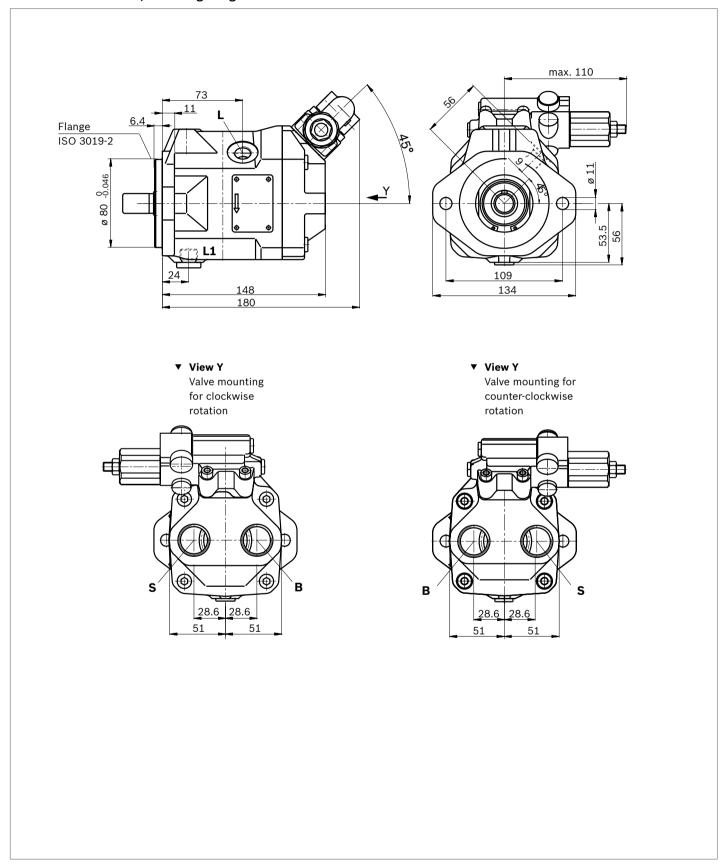

The pump thus only delivers as much hydraulic fluid as the consumers can take. The pressure can be set steplessly by the solenoid current.

As the solenoid current signal drops towards zero, the pressure will be limited to p_{max} by an adjustable hydraulic pressure cut-off (negative characteristic curve, e.g. for fan drives). A PWM signal is used to control the solenoid. For further information and technical data of the solenoids for ED(ER) control please refer to pages 16 to 19.

▼ Circuit diagram EP.ED

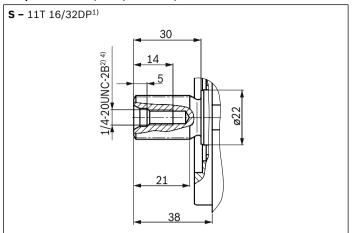


▼ Circuit diagram EK.ED

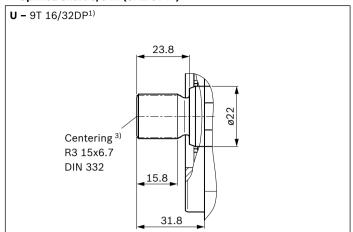


1 The metering orifice (control block) and the line is not included in the delivery contents.

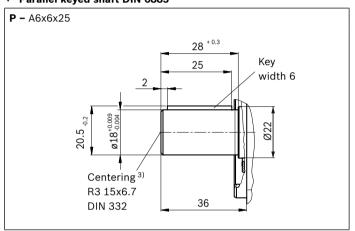
DR - Pressure control; centering flange SAE version



DR - Pressure control; centering flange metric version



24


▼ Splined shaft 3/4 in (SAE J744)

▼ Splined shaft 5/8 in (SAE J744)

▼ Parallel keyed shaft DIN 6885

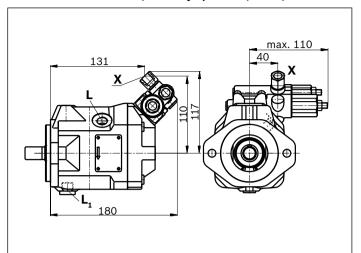
Ports		Standard	Size ⁴⁾	$p_{max\;abs}$ [bar] ⁵⁾	State ⁸⁾
В	Working port	DIN 3852	M27 × 2; 16 deep	315	0
s	Suction port	DIN 3852	M27 × 2; 16 deep	5	0
L	Drain port	DIN 3852 ⁶⁾	M16 × 1.5; 12 deep	2	O ⁷⁾
L ₁	Drain port	DIN 3852 ⁶⁾	M16 × 1.5; 12 deep	2	X ⁷⁾
L	Drain port	DIN 11926 ⁶⁾	9/16-18UNF-2B; 10 deep	2	O ⁷⁾
L ₁	Drain port	DIN 11926 ⁶⁾	9/16-18UNF-2B; 10 deep	2	X ⁷⁾
X with adapter	Control pressure	DIN 3852	M14 × 1.5; 12 deep	315	0
X without adapter	Control pressure	DIN ISO 228	7/16-20UNF-2B; 11.5 deep	315	0

¹⁾ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

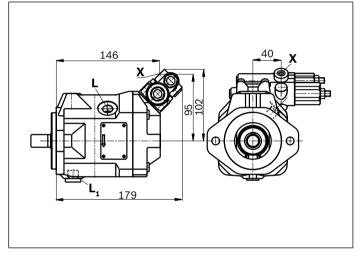
²⁾ Thread according to ASME B1.1

³⁾ Coupling axially secured, e.g. with a clamp coupling or radially mounted clamping screw

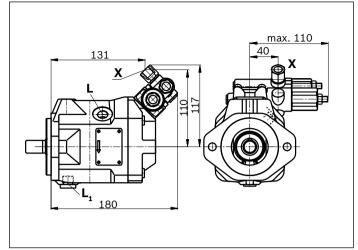
⁴⁾ Observe the project planning notes on page 64 concerning the maximum tightening torques.

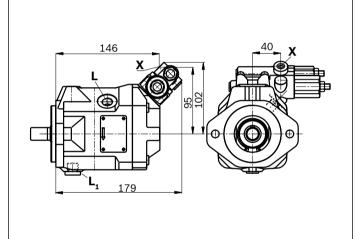

⁵⁾ Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings

⁶⁾ The spot face can be deeper than as specified in the standard.

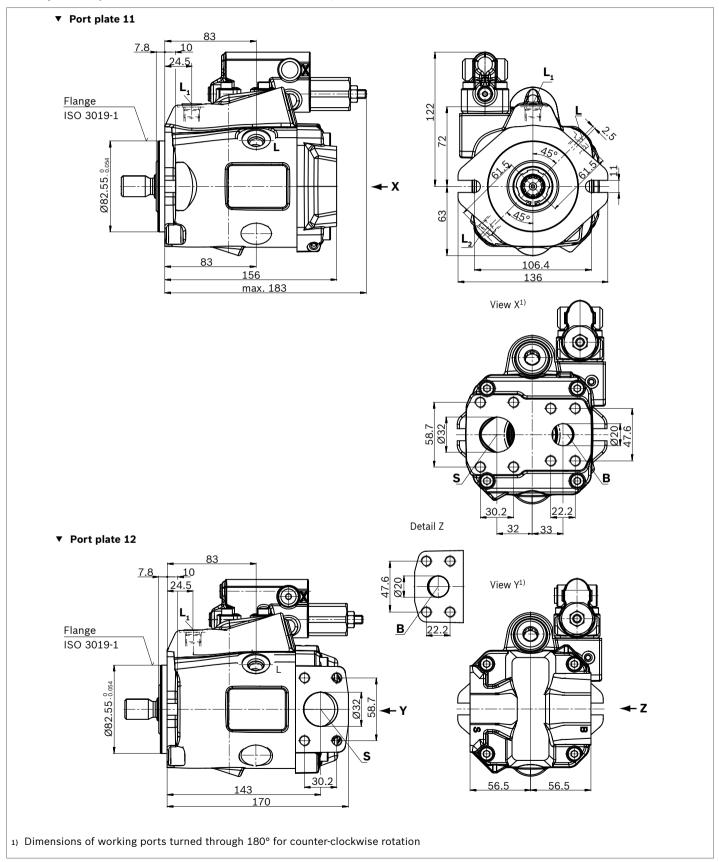

⁷⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 61).

⁸⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

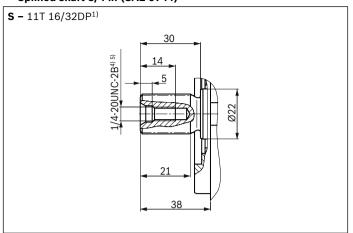

▼ DRG - Pressure control, remotely operated (metric)¹)


▼ DRG - Pressure control, remotely operated (SAE)¹)

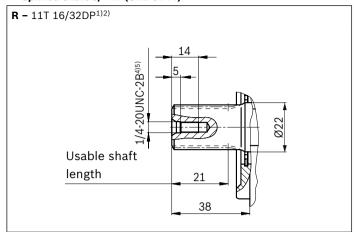
▼ DFR/DFR1 - Pressure, flow control (metric)¹)

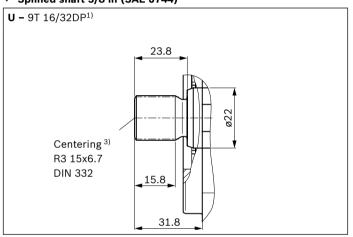


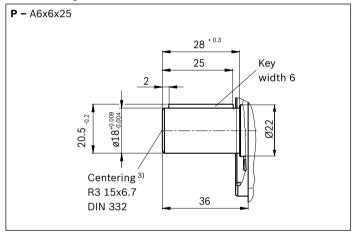
▼ DFR/DFR1 - Pressure, flow control (SAE)¹)



 $_{\mbox{\scriptsize 1)}}$ Valve mounting for clockwise or counter-clockwise rotation see page 11 and 12


DR - Hydraulic pressure controller; Clockwise rotation, series 53


▼ Splined shaft 3/4 in (SAE J744)


▼ Splined shaft 3/4 in (SAE J744)

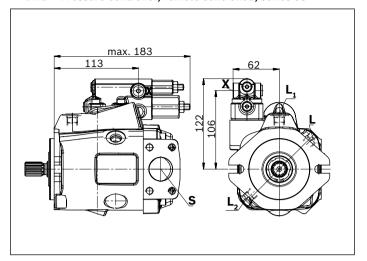
▼ Splined shaft 5/8 in (SAE J744)

▼ Parallel keyed shaft DIN 6885

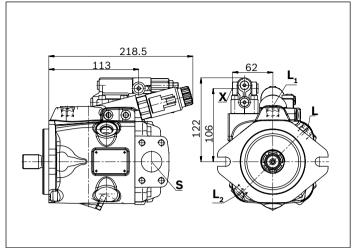
Ports		Standard	Size ⁵⁾	$p_{\text{max abs}}$ [bar] ⁶⁾	State ¹¹⁾
В	Working port (Standard pressure series) Fastening thread	SAE J518 ⁷⁾ DIN 13	3/4 in M10 × 1.5; 17 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁷⁾ DIN 13	1 1/4 in M10 × 1.5; 17 deep	5	0
L	Drain port	DIN 11926 ⁸⁾	3/4-16UNF-2B; 12 deep	2	O ₉₎
L ₁ , L ₂ ¹⁰⁾	Drain port	DIN 11926 ⁸⁾	3/4-16UNF-2B; 12 deep	2	X ₉₎
X	Control pressure	DIN 11926	7/16-20UNF-2A; 11.5 deep	315	0

- 3) Center bore according to DIN 332
- 4) Thread according to ASME B1.1
- 5) Observe the project planning notes on page 64 concerning the maximum tightening torques.

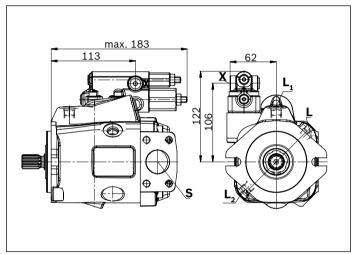
- 7) Metric fixing thread is a deviation from standard
- 8) The spot face can be deeper than as specified in the standard.
- 9) Depending on the installation position, L, L₁ or L₂ must be connected (also see installation instructions starting on page 61).
- 10) Only series 53

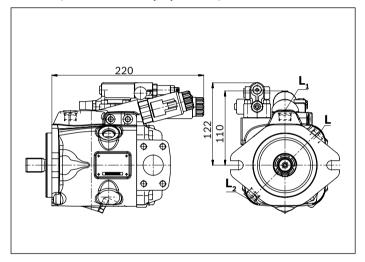

 $_{\rm 1)}$ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

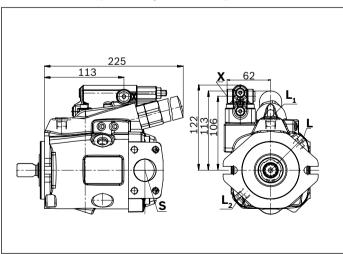
²⁾ Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

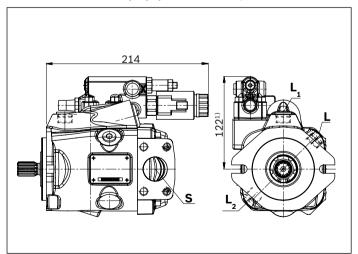

⁶⁾ Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings

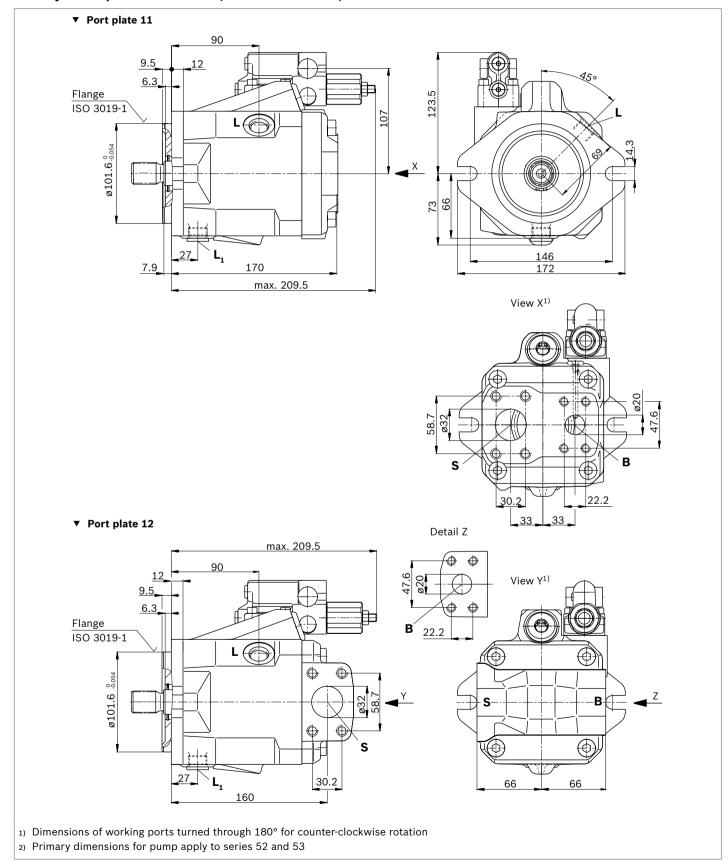
¹¹⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

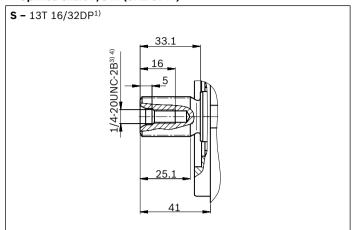

▼ DRG - Pressure controller, remote controlled, series 53

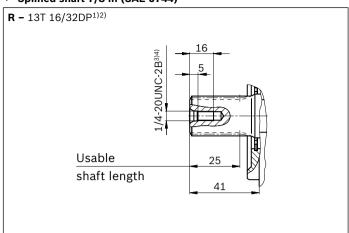

▼ EP.D. / EK.D. - Electro-proportional control, series 53


▼ DRF/DRS - Pressure and flow control, series 53


▼ EP.ED. / EK.ED. - Electro-prop. control, series 53


▼ LA.D. - Pressure, flow and power control, series 53


▼ ED7. / ER7. - Electro-prop. pressure control, series 53


DR - Hydraulic pressure controller; Clockwise rotation, series 52²⁾

▼ Splined shaft 7/8 in (SAE J744)

▼ Splined shaft 7/8 in (SAE J744)

Ports		Standard	Size ⁴⁾	$p_{\sf max\;abs}$ [bar] $^{5)}$	State ¹⁰⁾
В	Working port (Standard pressure series) Fixing thread	SAE J5186 ⁾ DIN 13	3/4 in M10 × 1.5; 17 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M10 × 1.5; 17 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	3/4-16UNF-2B; 12 deep	2	O ₈₎
L₁, L₂ ⁹⁾	Drain port	ISO 11926 ⁷⁾	3/4-16UNF-2B; 12 deep	2	X ₈₎
х	Control pressure	ISO 11926	7/16-20UNF-2B; 11.5 deep	315	0

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

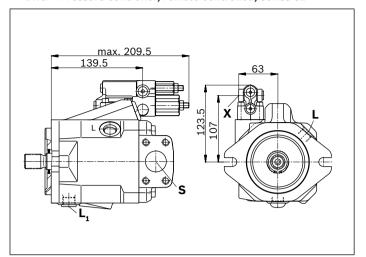
²⁾ Splines according to ANSI B92.1a, run out of spline is a deviation from standard.

³⁾ Thread according to ASME B1.1

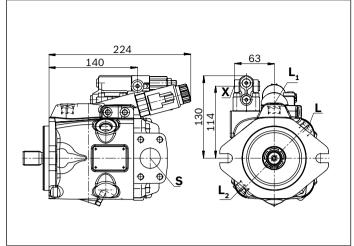
⁴⁾ Observe the project planning notes on page 64 concerning the maximum tightening torques.

⁵⁾ Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings

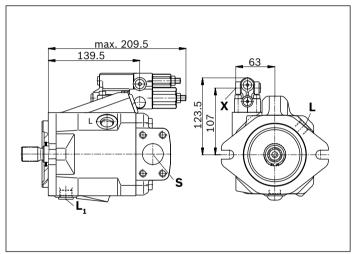
⁶⁾ Metric fixing thread is a deviation from standard

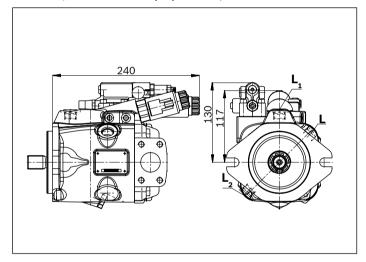

⁷⁾ The spot face can be deeper than as specified in the standard.

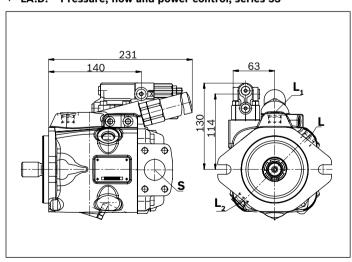
⁸⁾ Depending on the installation position, L, L_1 or L_2 must be connected (also see installation instructions starting on page 61).

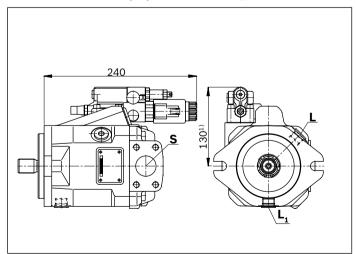

⁹⁾ Only for series 53

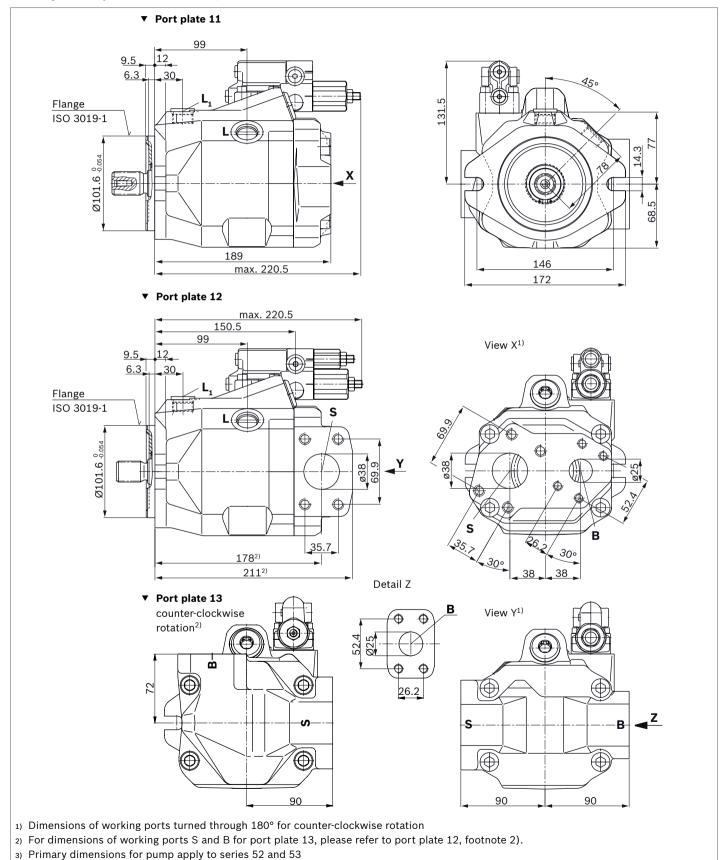
¹⁰⁾ O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

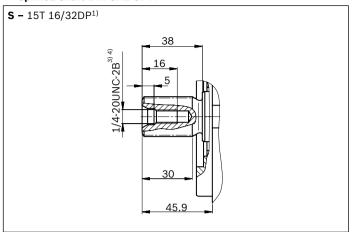

▼ DRG - Pressure controller, remote controlled, series 52

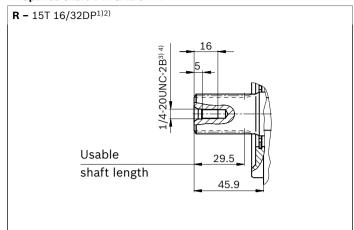

▼ EP.D. / EK.D. - Electro-proportional control, series 53

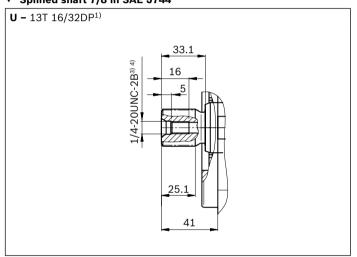

▼ DFR/DFR1 - Pressure and flow control, series 52

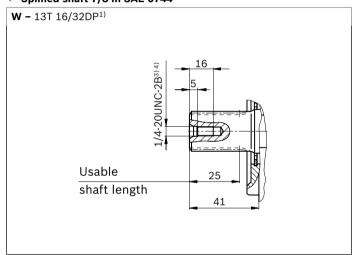

▼ EP.ED. / EK.ED. - Electro-prop. control, series 53


▼ LA.D. - Pressure, flow and power control, series 53


▼ ED7. / ER7. - Electro-prop. Pressure control, series 52

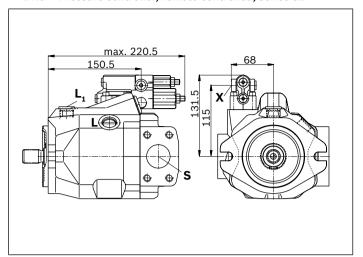

DR - Hydraulic pressure controller; Clockwise rotation, series 52³⁾


▼ Splined shaft 1 in SAE J744

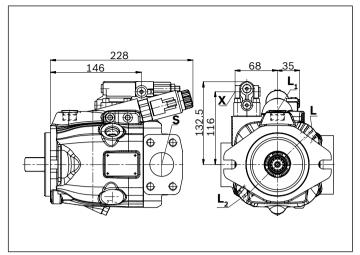

▼ Splined shaft 1 in SAE J744

▼ Splined shaft 7/8 in SAE J744

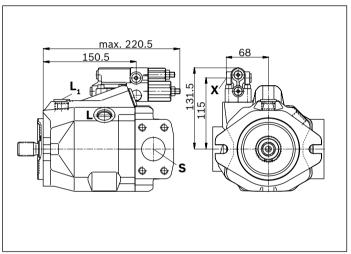
▼ Splined shaft 7/8 in SAE J744

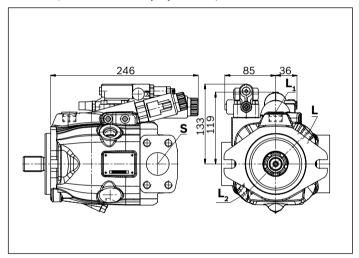


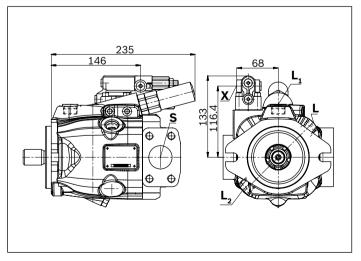
Ports		Standard	Size ⁴⁾	p_{maxabs} [bar] $^{5)}$	State ¹⁰⁾
В	Working port (Standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 in M10 × 1.5; 17 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/2 in M12 × 1.75; 20 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	O ⁸⁾
L _{1,} L ₂ ⁹⁾	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	X ₈₎
Х	Control pressure	ISO 11926	7/16-20UNF-2A; 11.5 deep	315	0

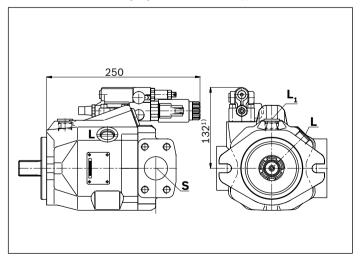

- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) Observe the project planning notes on page 64 concerning the maximum tightening torques.
- 5) Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings
- 6) Metric fixing thread is a deviation from standard
- 7) The spot face can be deeper than as specified in the standard.
- 8) Depending on the installation position, L, L₁ or L₂ must be connected (also see installation instructions starting on page 61).
- 9) Only series 53
- 10) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

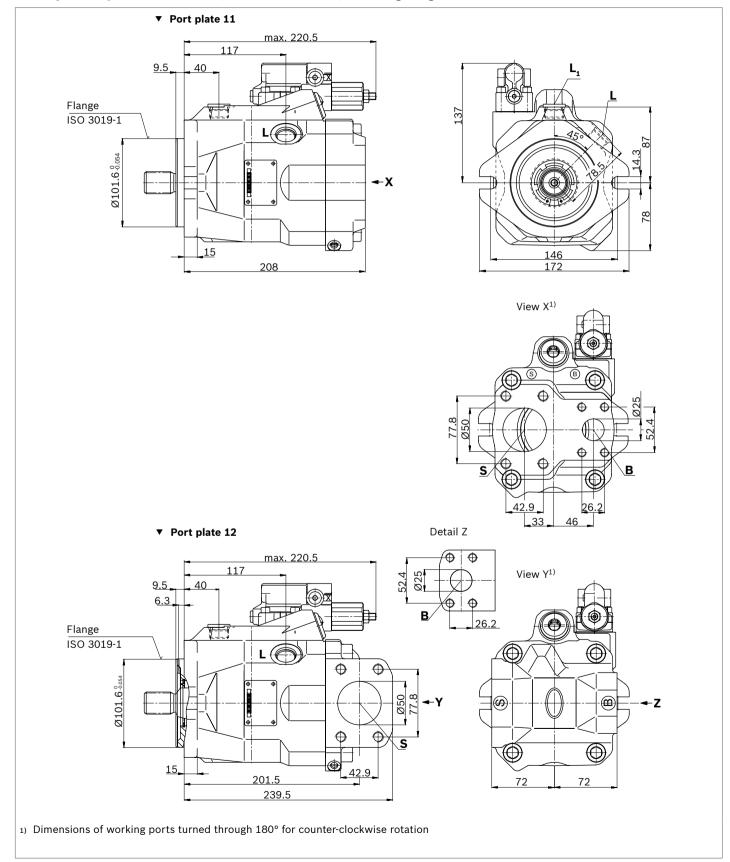
34

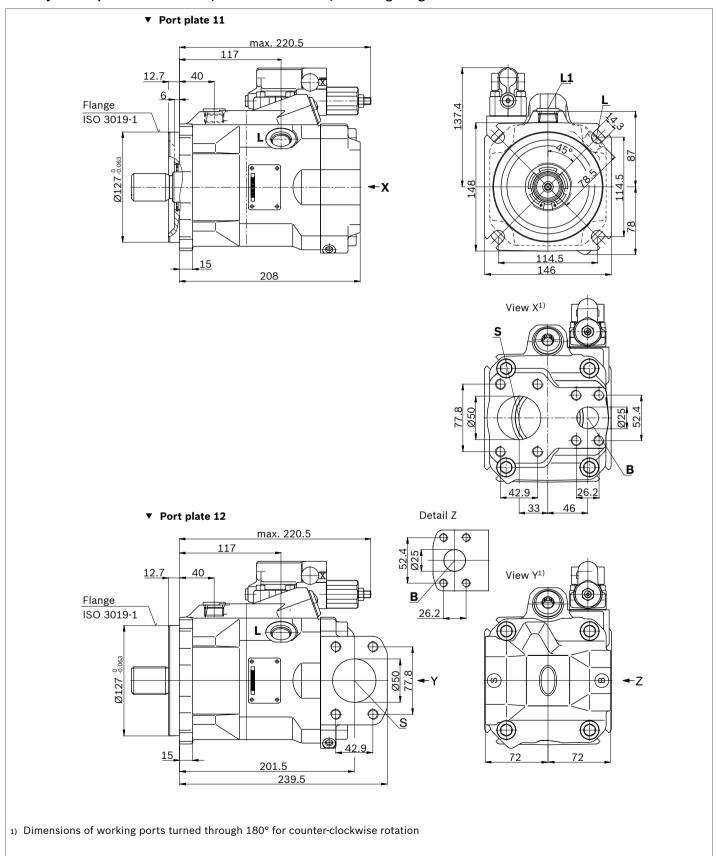

▼ DRG - Pressure controller, remote controlled, series 52

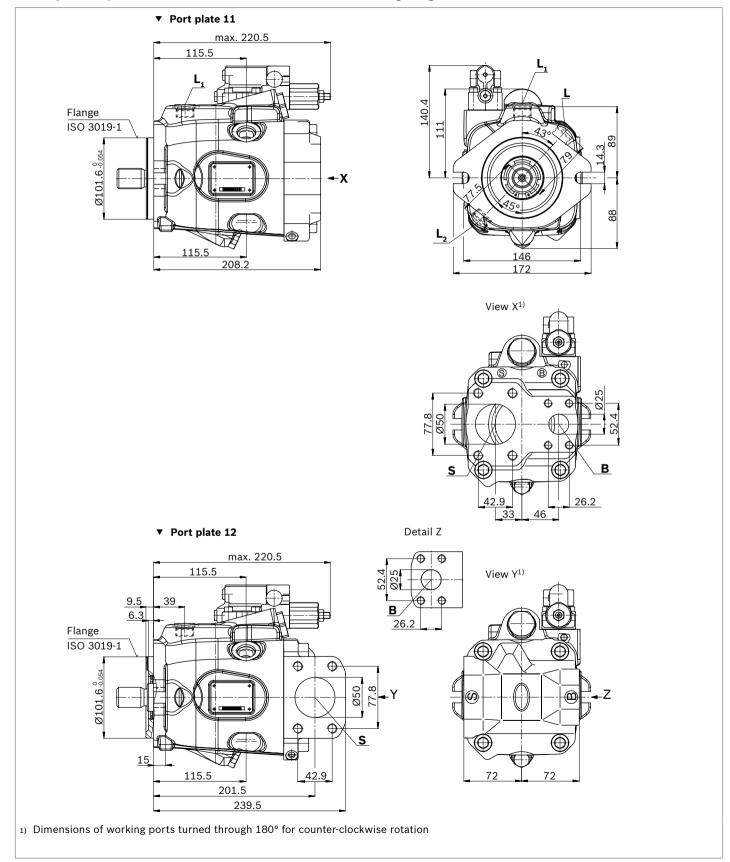

▼ EP.D. / EK.D. - Electro-proportional control, series 53

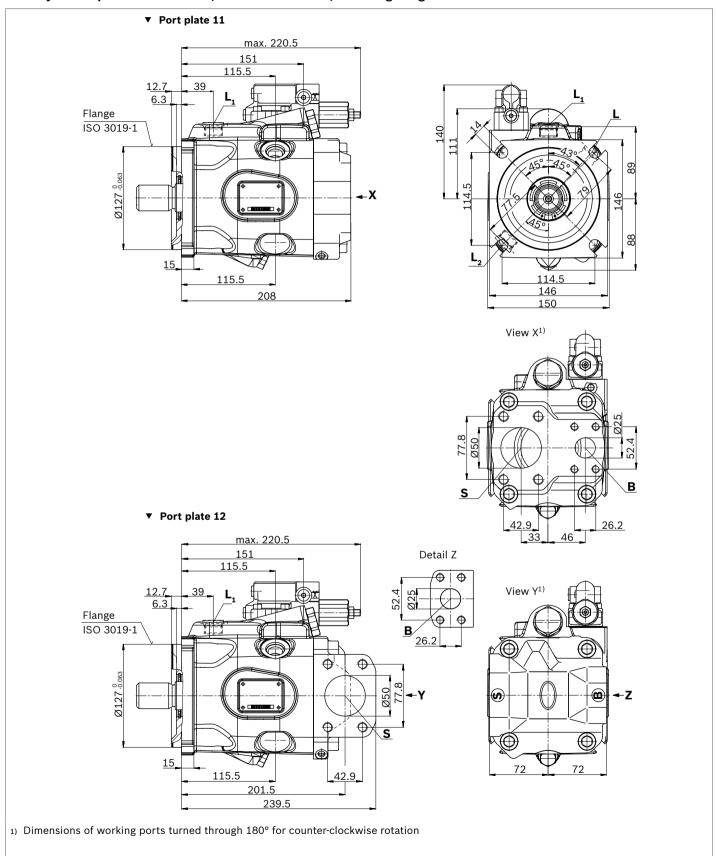

▼ DFR/DFR1 - Pressure and flow control, series 52

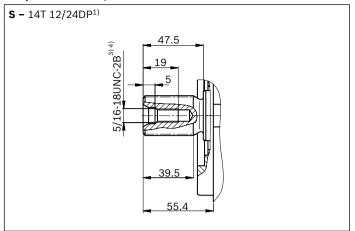

▼ EP.ED. / EK.ED. - Electro-prop. control, series 53

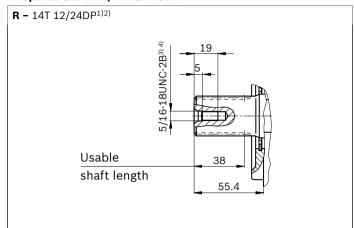

▼ LA.D. - Pressure, flow and power control, series 53

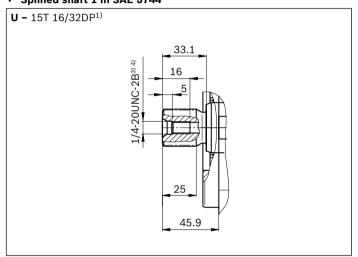

▼ ED7. / ER7. - Electro-prop. Pressure control, series 52

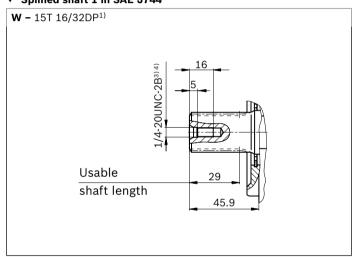

DR - Hydraulic pressure controller; Clockwise rotation, mounting flange C series 52


DR - Hydraulic pressure controller; Clockwise rotation, mounting flange D series 52


DR - Hydraulic pressure controller; Clockwise rotation, mounting flange C series 53

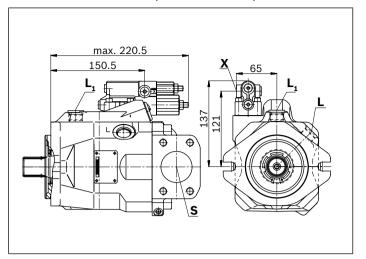

DR - Hydraulic pressure controller; Clockwise rotation, mounting flange D series 53


▼ Splined shaft 1 1/4 in SAE J744

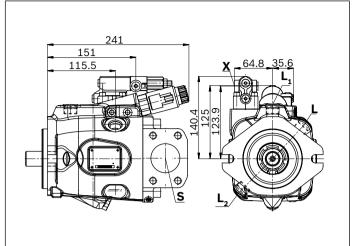

▼ Splined shaft 1 1/4 in SAE J744

▼ Splined shaft 1 in SAE J744

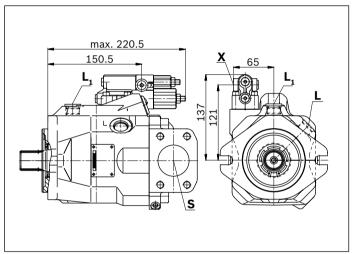
▼ Splined shaft 1 in SAE J744

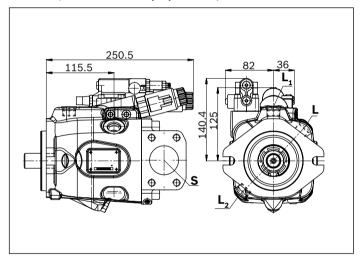


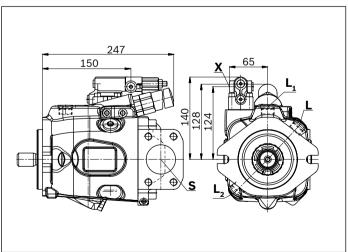
Ports		Standard	Size ⁴⁾	p_{maxabs} [bar] $^{5)}$	State ¹⁰⁾
В	Working port (Standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 in M10 × 1.5; 17 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 in M12 × 1.75; 20 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	O ⁸⁾
L _{1,} L ₂ ⁹⁾	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	X ₈₎
X	Control pressure	ISO 11926	7/16-20UNF-2A; 11.5 deep	315	0

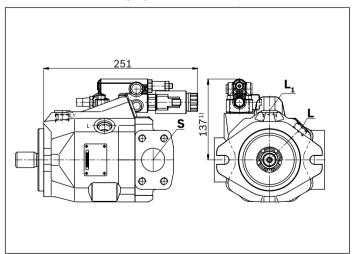

- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) Observe the project planning notes on page 64 concerning the maximum tightening torques.
- 5) Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings
- 6) Metric fixing thread is a deviation from standard
- 7) The spot face can be deeper than as specified in the standard.
- 8) Depending on the installation position, L, L₁ or L₂ must be connected (also see installation instructions starting on page 61).
- 9) Only series 53
- 10) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Dimensions, nominal sizes 60/63

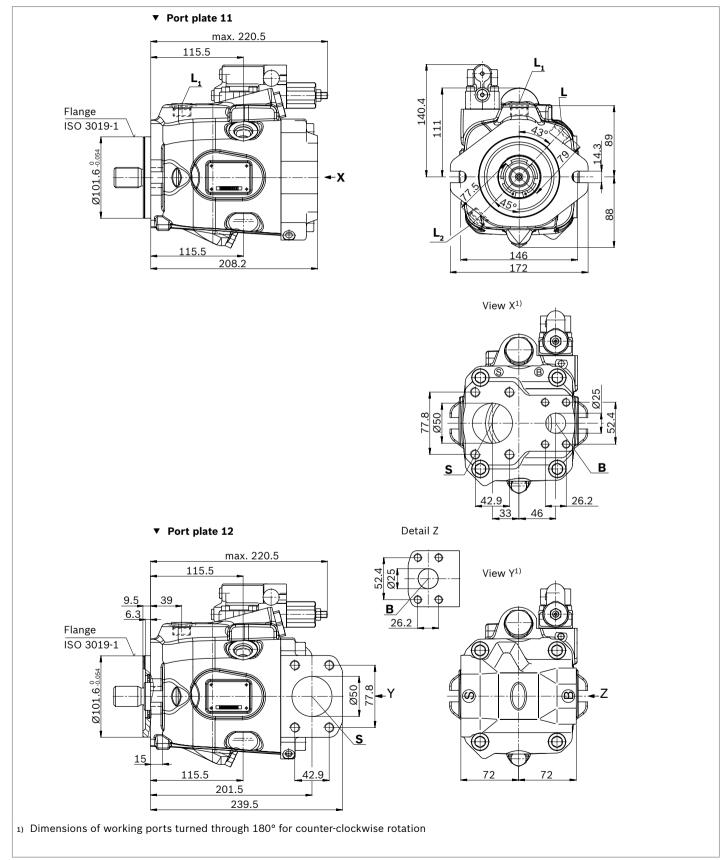

▼ DRG - Pressure controller, remote controlled, series 52


▼ EP.D. / EK.D. - Electro-proportional control, series 53

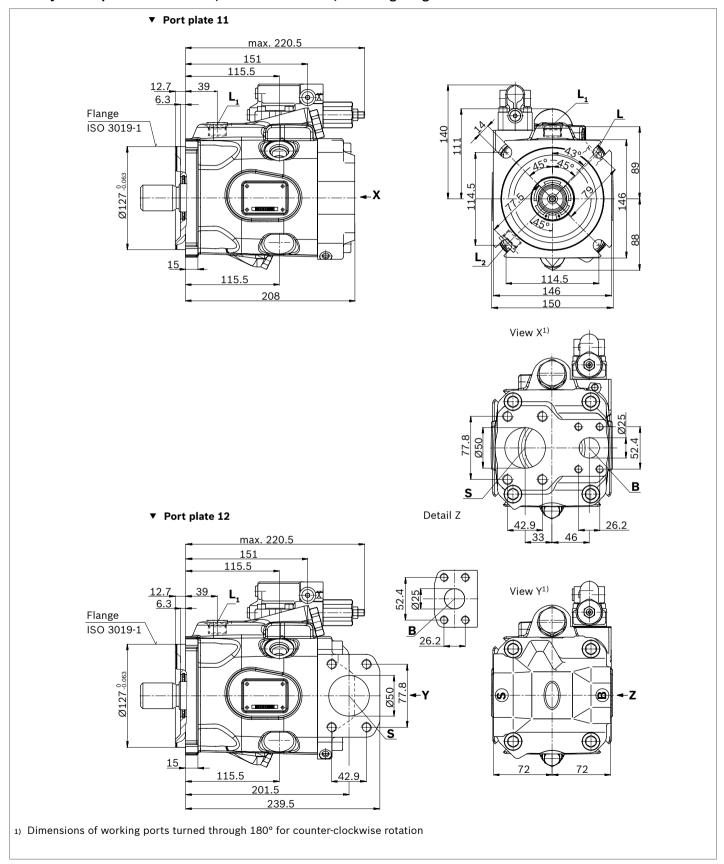

▼ DFR/DFR1 - Pressure and flow control, series 52


▼ EP.ED. / EK.ED. - Electro-prop. control, series 53

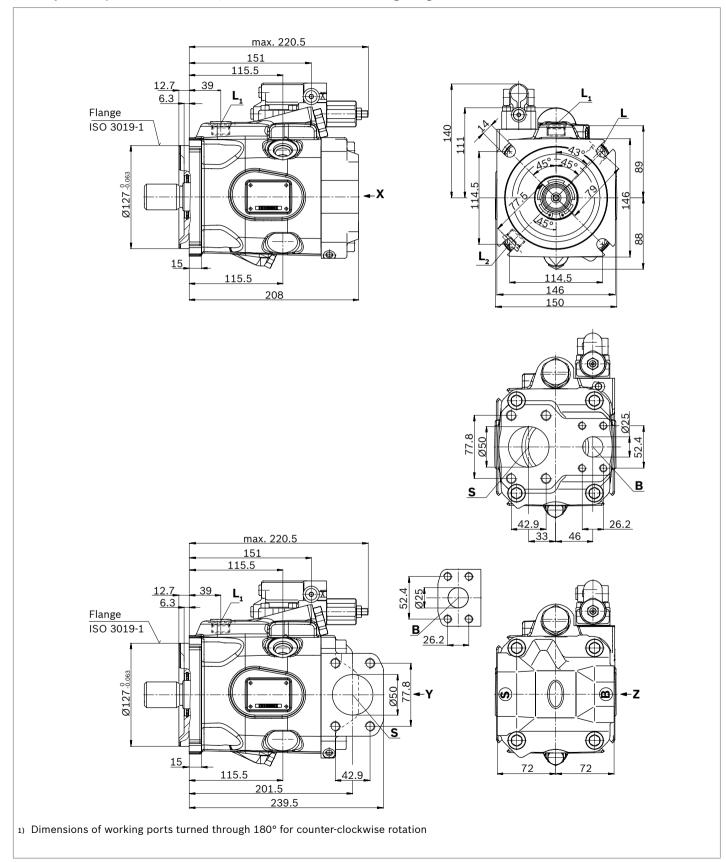
▼ LA.D. - Pressure, flow and power control, series 53



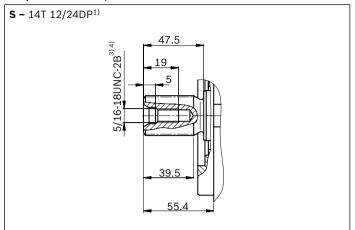
▼ ED7. / ER7. - Electro-prop. Pressure control, series 52

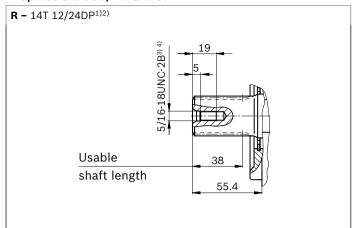

¹⁾ ER7.: 172 mm if using an intermediate plate pressure controller

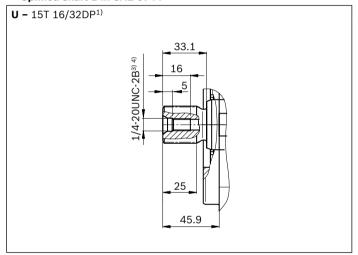
DR - Hydraulic pressure controller; Clockwise rotation, mounting flange C series 53

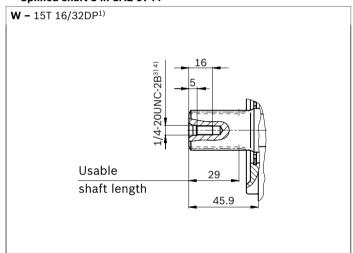


Dimensions, size 72

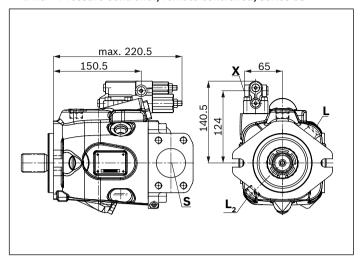

DR - Hydraulic pressure controller; Clockwise rotation, mounting flange D series 53

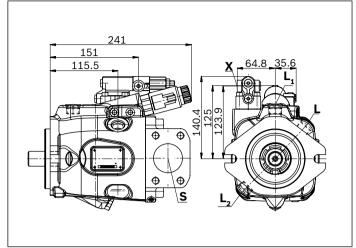

DR - Hydraulic pressure controller; Clockwise rotation, mounting flange R series 53


▼ Splined shaft 1 1/4 in SAE J744

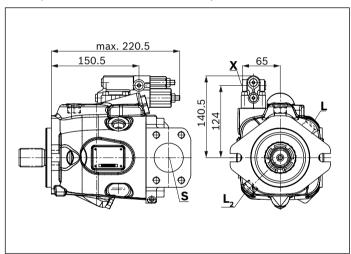

▼ Splined shaft 1 1/4 in SAE J744

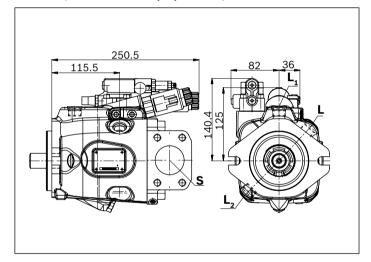
▼ Splined shaft 1 in SAE J744

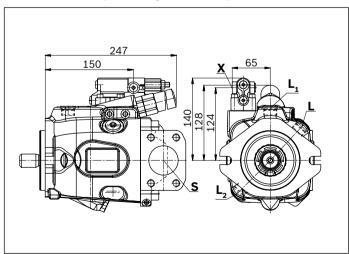

▼ Splined shaft 1 in SAE J744

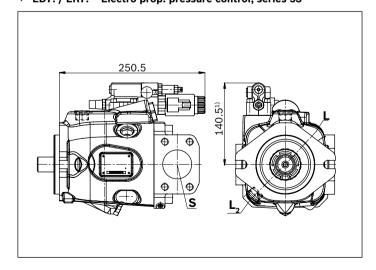

Ports		Standard	Size ⁴⁾	p_{maxabs} [bar] $^{5)}$	State ¹⁰⁾
В	Working port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 in M10 × 1.5; 17 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 in M12 × 1.75; 20 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	O ⁸⁾
L _{1,} L ₂ ⁹⁾	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 13 deep	2	X ₈₎
X	Control pressure	ISO 11926	7/16-20UNF-2A; 11.5 deep	315	0

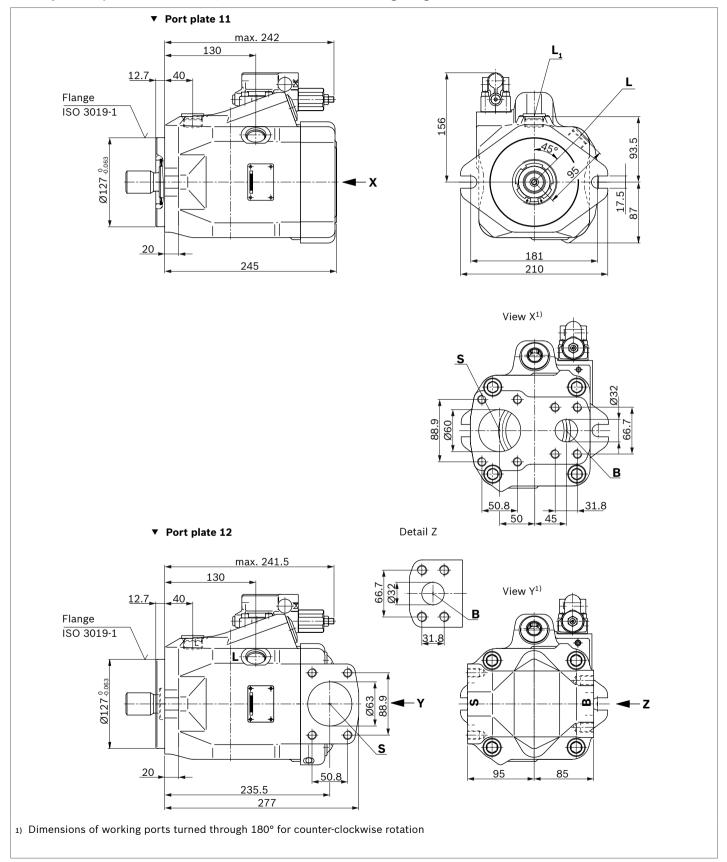
- 1) Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) Observe the project planning notes on page 64 concerning the maximum tightening torques.
- 5) Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings
- 6) Metric fixing thread is a deviation from standard
- 7) The spot face can be deeper than as specified in the standard.
- 8) Depending on the installation position, L, L_1 or L_2 must be connected (also see installation instructions starting on page 61).
- 9) Only series 53
- 10) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

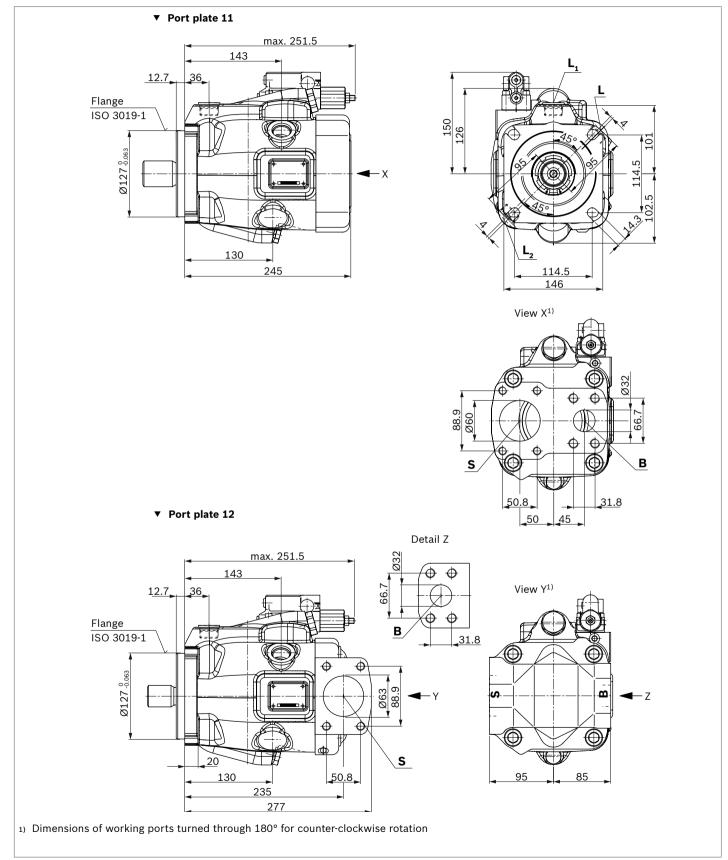

▼ DRG - Pressure controller, remote controlled, series 53


▼ EP.D. / EK.D. - Electro-proportional control, series 53

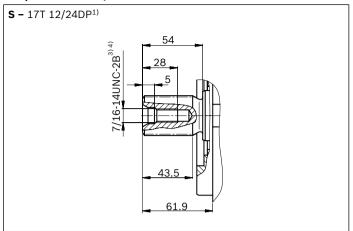

▼ DRF/DRS - Pressure and flow control, series 53


▼ EP.ED. / EK.ED. - Electro-prop. control, series 53

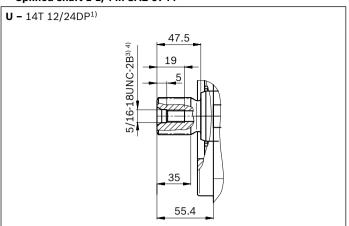

▼ LA.D. - Pressure, flow and power control, series 53


▼ ED7. / ER7. – Electro-prop. pressure control, series 53

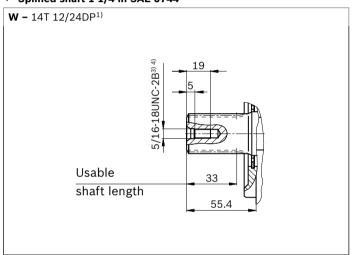
DR - Hydraulic pressure controller; Clockwise rotation, mounting flange C series 52



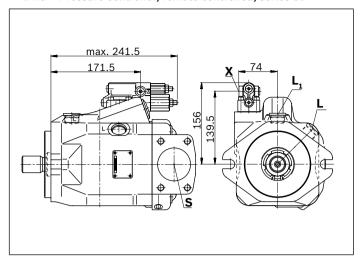
DR - Hydraulic pressure controller; Clockwise rotation, mounting flange D series 53

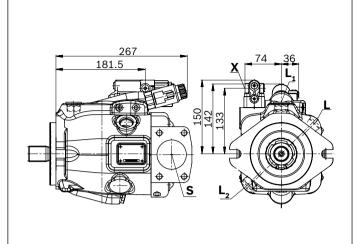


48

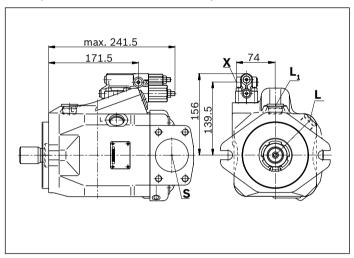

▼ Splined shaft 1 1/2 in SAE J744

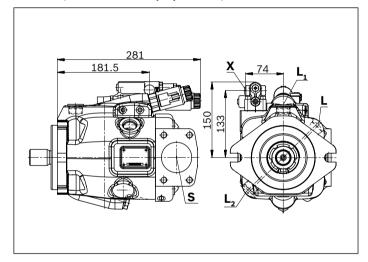
▼ Splined shaft 1 1/4 in SAE J744

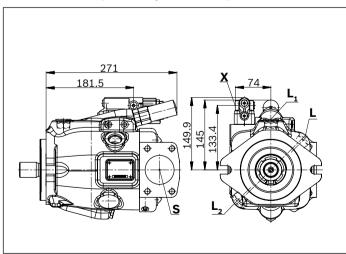

▼ Splined shaft 1 1/4 in SAE J744

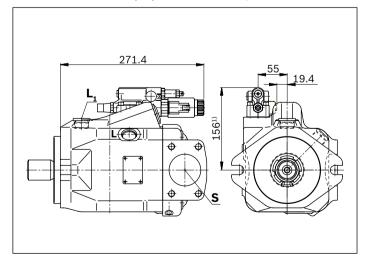

Ports		Standard	Size ⁴⁾	p _{max abs} [bar] ⁵⁾	State ¹⁰⁾
В	Working port (high-pressure line) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 × 2; 19 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 × 1.75; 17 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	O ⁸⁾
L _{1,} L ₂ ⁹⁾	Drain port	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	X ₈)
Х	Control pressure	ISO 11926	7/16-20UNF-2A; 11.5 deep	315	0

- Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) Observe the project planning notes on page 64 concerning the maximum tightening torques.
- 5) Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings
- 6) Metric fixing thread is a deviation from standard
- 7) The spot face can be deeper than as specified in the standard.
- 8) Depending on the installation position, L, L₁ or L₂ must be connected (also see installation instructions starting on page 61).
- 9) Only series 53
- 10) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

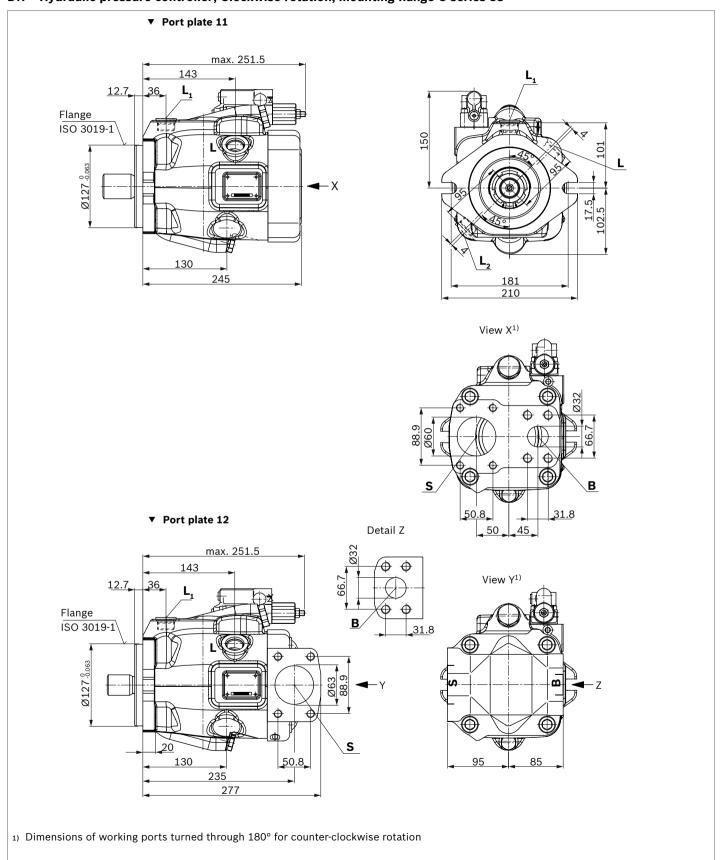

▼ DRG - Pressure controller, remote controlled, series 52


▼ EP.D. / EK.D. - Electro-proportional control, series 53

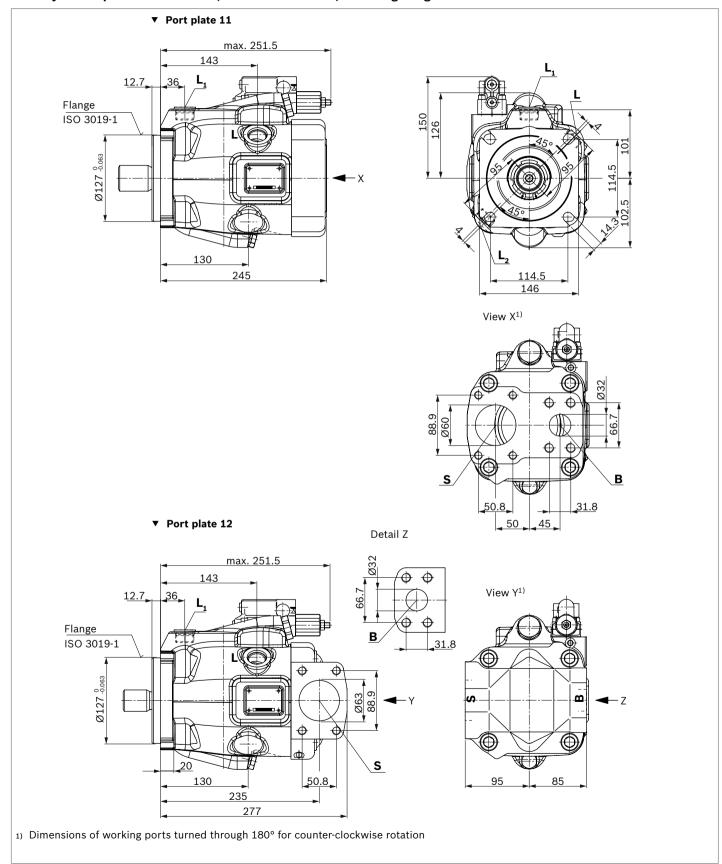

▼ DRF/DRS - Pressure and flow control, series 52


▼ EP.ED. / EK.ED. - Electro-prop. control, series 53

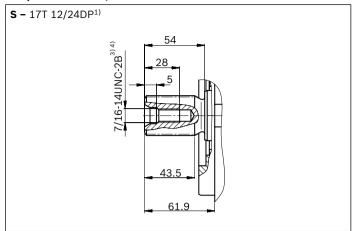
▼ LA.D. - Pressure, flow and power control, series 53

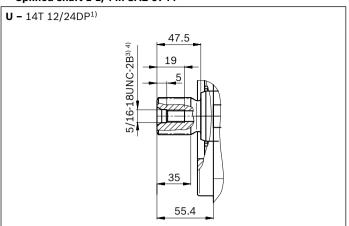


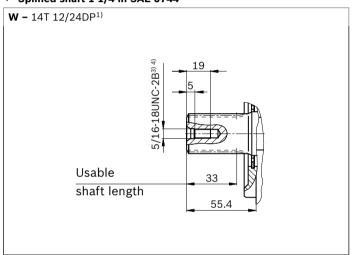
▼ ED7. / ER7. - Electro-prop. Pressure control, series 52



 $_{\mbox{\scriptsize 1)}}$ ER7.: 191 mm when using a sandwich plate pressure reducing valve

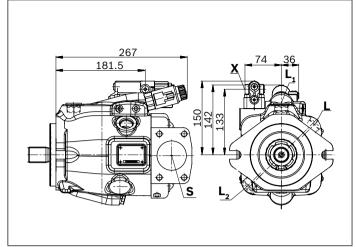

DR - Hydraulic pressure controller; Clockwise rotation, mounting flange C series 53


DR - Hydraulic pressure controller; Clockwise rotation, mounting flange D series 53

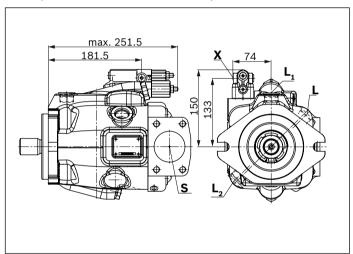

▼ Splined shaft 1 1/2 in SAE J744

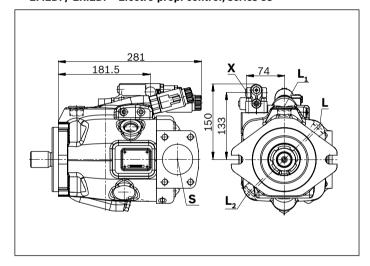
▼ Splined shaft 1 1/4 in SAE J744

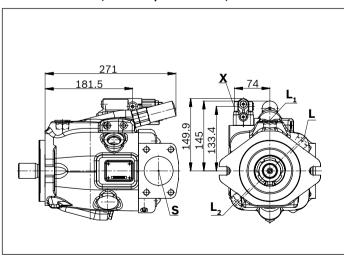
▼ Splined shaft 1 1/4 in SAE J744

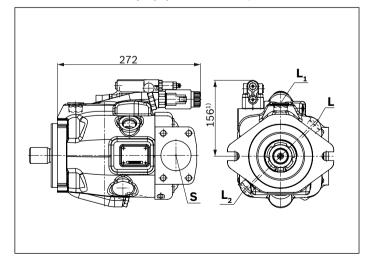

Ports		Standard	Size ⁴⁾	$p_{maxabs}[bar]^{5)}$	Status ¹⁰⁾
В	Working port (high-pressure line) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 × 2; 19 deep	315	0
S	Suction port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 × 1.75; 17 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	O ⁸⁾
L _{1,} L ₂ ⁹⁾	Drain port	ISO 11926 ⁷⁾	1 1/16-12UNF-2B; 15 deep	2	X ₈₎
Х	Control pressure	ISO 11926	7/16-20UNF-2A; 11.5 deep	315	0

- Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 2) Splines according to ANSI B92.1a, run out of spline is a deviation from standard.
- 3) Thread according to ASME B1.1
- 4) Observe the project planning notes on page 64 concerning the maximum tightening torques.
- 5) Depending on the application, momentary pressure spikes can occur. Keep this in mind when selecting measuring equipment and fittings
- 6) Metric fixing thread is a deviation from standard
- 7) The spot face can be deeper than as specified in the standard.
- 8) Depending on the installation position, L, L₁ or L₂ must be connected (also see installation instructions starting on page 61).
- 9) Only series 53
- 10) O = Must be connected (plugged on delivery) X = Plugged (in normal operation)


▼ DRG - Pressure controller, remote controlled, series 53

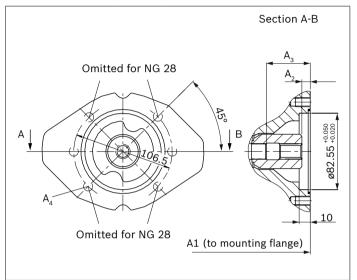

▼ EP.D. / EK.D. - Electro-proportional control, series 53

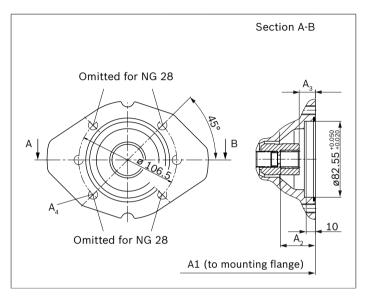

▼ DRF/DRS - Pressure and flow control, series 53


▼ EP.ED. / EK.ED. - Electro-prop. control, series 53

▼ LA.D. - Pressure, flow and power control, series 53

▼ ED7. / ER7. - Electro-prop. pressure control, series 53


 $_{\mbox{\scriptsize 1)}}$ ER7.: 191 mm when using a sandwich plate pressure reducing valve


Dimensions through drive

Flange ISO 3019-1 (SAE)		Hub for splined shaft ¹⁾	Availa	Availability over sizes						
Diameter	Attachment ²⁾	Diameter	18	28	45	60/63	72	85	100	
82-2 (A)	o° 00	5/8 in 9T 16/32DP	•	•	•	•	•	•	•	K01
		3/4 in 11T 16/32DP	•	•	•	•	•	•	•	K52

• = Available • = On request

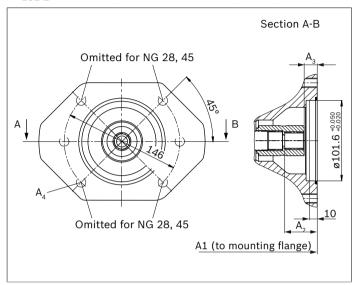
▼ 82-2

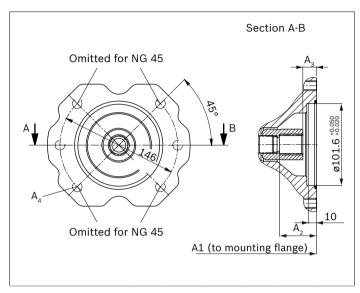
K01 (SAE J744 16-4 (A))	NG	A1	A2	А3	A4 ³⁾
	18	182	9.3	43.3	M10×1.5; 14.5 deep
	28	204	9.9	47	M10×1.5; 16 deep
	45	229	10.7	53	M10×1.5; 16 deep
	60 63	255	9.5	59	M10×1.5; 16 deep
	72	255	9.5	59	M10×1.5; 16 deep
	85	302	13.4	68	M10×1.5; 20 deep
	100	302	13.4	68	M10×1.5; 20 deep

K52 (SAE J744 19-4 (A-B))	NG	A1	A2	А3	A4 ³⁾
	18	182	39	18.8	M10×1.5; 14.5 deep
	28	204	39.3	18.8	M10×1.5; 16 deep
	45	229	39.4	18.9	M10×1.5; 16 deep
	60 63	255	39.4	18.9	M10×1.5; 16 deep
	72	255	39.4	18.9	M10×1.5; 16 deep
	85	302	44.1	23.6	M10×1.5; 20 deep
	100	302	44.1	23.6	M10×1.5; 20 deep

 $_{\rm 1)}$ According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Mounting drillings pattern viewed from through drive with control at top


³⁾ Thread according to DIN 13, observe the project planning notes on page 64 for the maximum tightening torques.


Flange ISO 3019-1 (SAE)		Hub for	Hub for splined shaft ¹⁾		Availability over sizes							
Diameter	Attachment ²⁾	Diamete	Diameter		28	45	60/63	72	85	100		
101-2 (B)	o° ⊶	7/8 in	13T 16/32DP	-	•	•	•	•	•	•	K68	
		1 in	15T 16/32DP	l -	_	•	•	•	•	•	K04	

• = Available

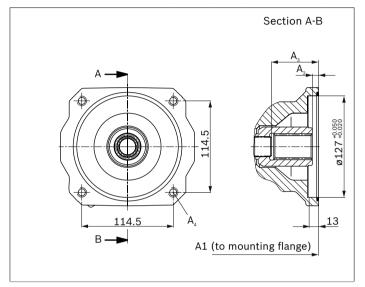
o = On request

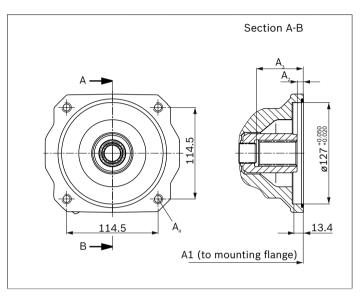
▼ 101-2

K68 (SAE J744 22-4 (B))	NG	A1	A2	А3	A4 ³⁾
	28	204	42.3	17.8	M12×1.75; 18 deep
	45	229	42.4	17.9	M12×1.75; 18 deep
	60 63	255	42.4	17.9	M12×1.75; 18 deep
	72	255	42.4	17.9	M12×1.75; 18 deep
	85	302	46.5	22	M12×1.75; 20 deep
	100	302	46.5	22	M12×1.75; 20 deep

K04 (SAE J744 25-4 (B-B))	NG	A1	A2	А3	A4 ³⁾
	45	229	47.9	18.9	M12×1.75; 18 deep
	60 63	255	47.4	18.4	M12×1.75; 18 deep
	72	255	47.4	18.4	M12×1.75; 18 deep
	85	302	51.2	22.2	M12×1.75; 20 deep
	100	302	51.2	22.2	M12×1.75; 20 deep

According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5


²⁾ Mounting drillings pattern viewed from through drive with control at top


³⁾ Thread according to DIN 13, observe the project planning notes on page 64 for the maximum tightening torques.

Flange ISO 30	19-1 (SAE)	Hub for splined shaft ¹⁾	Availability over sizes							Code
Diameter	Attachment ²⁾	Diameter	18	28	45	60/63	72	85	100	
127-4 (C)	\$\$	1 1/4 in 14T 12/24DP	-	-	-	•	•	•	•	K15
		1 1/2 in 17T 12/24DP	-	-	-	-	-	•	•	K16

• = Available • = On request

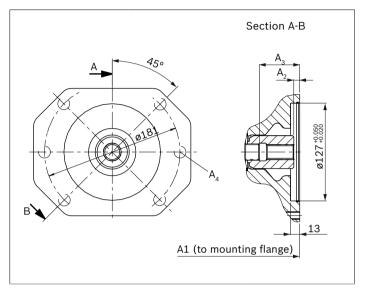
▼ 127-4

K15 (SAE J744 32-4 (C))	NG	A1	A2	А3	A4 ³⁾
	60 63	255	8	59	M12×1.75; 16 deep
	72	255	8	59	M12×1.75; 16 deep
	85	301.5	13	67.9	M12×1.75; through
	100	301.5	13	67.9	M12×1.75; through

K16	NG	A1	A2	А3	A4 ³⁾
(SAE J744 32-4 (C))					
	85	301.5	13	67.9	M12×1.75; through
	100	301.5	13	67.9	M12×1.75; through

 $_{\mbox{\scriptsize 1)}}$ According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

 $_{\rm 2)}$ Mounting drillings pattern viewed from through drive with control at top


³⁾ Thread according to DIN 13, observe the project planning notes on page 64 for the maximum tightening torques.

Flange ISO 3019-1 (SAE)		Hub for splined shaft ¹⁾	Hub for splined shaft ¹⁾ Availability of		vailability over sizes					
Diameter	Attachment ²⁾	Diameter	18	28	45	60/63	72	85	100	
127-2 (B)	ი ∾	1 1/4 in 14T 12/24DP	-	_	-	-	-	•	•	K07
		1 1/2 in 17T 12/24DP	-	-	-	-	-	•	•	K24

• = Available • = On request

▼ 127-2

K07	NG	A1	A2	А3	A4 ³⁾
(SAE J744 32-4 (C))					
	85	301.5	13	67.9	M12×1.75; through
	100	301.5	13	67.9	M12×1.75; through

K24	NG	A1	A2	А3	A4 ³⁾
(SAE J744 38-4 (C-C))					
	85	302	8	68	M16×2;
					24 deep
	100	302	8	68	M16×2;
					24 deep

 $_{\mbox{\scriptsize 1)}}$ According to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Mounting drillings pattern viewed from through drive with control at top

³⁾ Thread according to DIN 13, observe the project planning notes on page 64 for the maximum tightening torques.

Overview of attachment options

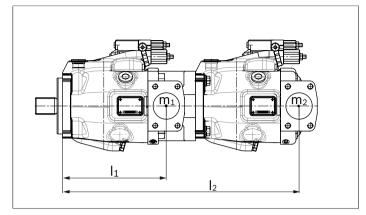
Through dri	ve		Attachment options of	2 nd pump		
Flange ISO 3019-1	Hub for splined shaft	Short des.	A10V(S)O/5x NG (shaft)	A10VO/31 NG (shaft)	A1VO/10 NG (shaft)	External gear pump
82-2 (A)	5/8 in	K01	10 (U)	18 (U)	18 (S2)	Series F
	3/4 in	K52	10 (U) 18 (U) 18 (S, R)	18 (S, R)	18 (S3)	
101-2 (B)	7/8 in	K68	28 (S,R) 45 (U, W) ¹⁾	28 (S,R) 45 (U,W)	35 (S4)	Series N/G
	1 in	K04	45 (S,R) 60, 63 (U, W) ²⁾ 72 (U, W) ²⁾	45 (S,R)	35 (S5)	-
127-4 (C)	1 1/4 in	K15	60, 63 (S, R) 72 (S,R)	-	-	-
	1 1/2 in	K16	85 (S) 100 (S)	-	-	-
127-2 (C)	1 1/4 in	K07	85 (U,W) 100 (U, W)	71 (S,R)	-	PGH5
	1 1/2 in	K24	85 (S) 100 (S)	-	-	-

¹⁾ Not for NG28 with K68

²⁾ Not for NG28 with K04

Combination pumps A10VO + A10VO

Through the use of combination pumps, it is possible to have independent circuits without the need to fit splitter gearboxes.


When ordering combination pumps, the type designations of the 1st and 2nd pump must be linked with a "+" sign.

Order example:

A10VO85DRS/53R-VSC12K04+ A10VO45DRF/53R-VSC11N00

It is permissible to use a combination of two single pumps of the same nominal size (tandem pump) considering a dynamic mass acceleration of maximum 10 g (= 98.1 m/s²) without additional support brackets.

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque (please consult us).

m_1, m_2, m_3	Weight of pump	[kg]	
l_1, l_2, l_3	Distance, center of gravity	[mm]	

$$T_m = (m_1 \times l_1 + m_2 \times l_2 + m_3 \times l_3) \times \frac{1}{102}$$
 [Nm]

Permissible mass moment of inertia

NG			10	18	28	45	60/63	72	85	100
static	T_m	Nm	-	_	890	900	1370	1370	3080	3080
dynamic at 10 g (98.1 m/s ²)	T_m	Nm	_	_	89	90	137	137	308	308
Weight with through-drive plate	m	kg	_	13	18	24	28	28	45	45
Weight without through-drive plate (e.g. 2 nd pump)			8	11.5	15	18	22	22	36	36
Distance, center of gravity without through drive	l_1	mm	-	78	85	96	105	105	122	122
Distance, center of gravity with through drive	l_1	mm	_	87	99	115	127	127	150	150

Connector for solenoids

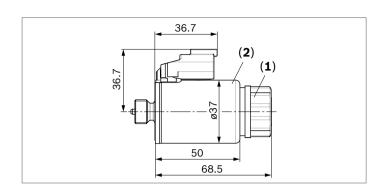
DEUTSCH DT04-2P-EP04

Molded connector, 2-pin, without bidirectional suppressor diode

The following type of protection is provided with installed mating connector:

- ► IP67 (DIN/EN 60529) and
- ► IP69K (DIN 40050-9)

▼ Circuit diagram symbol



▼ Mating connector DEUTSCH DT06-2S-EP04

Consisting of	DT designation
1 case	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the delivery contents.

This can be supplied by Bosch Rexroth on request (material number R902601804).

Changing plug position

If necessary, you can change the position of the connector by turning the solenoid.

To do this, proceed as follows:

- ► Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- ► Turn the solenoid body (2) to the desired orientation.
- ► Retighten the fixing nut.

Tightening torque: 5+1 Nm.

(WAF 26, 12-sided DIN 3124)

On delivery, the position of the connector may differ from that shown in the brochure or drawing.

Electronic controls

Control	Electronics function	electronics		Further information
Electric pressure control	Controlled power outlet	RA	analog	95230
		RC2-2/21 ¹⁾	digital	95201

¹⁾ Power outlets for 2 valves, can be actuated separately

Installation instructions

General

The axial piston unit must be filled with hydraulic fluid and air bled during commissioning and operation. This must also be observed following a longer standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly with the "drive shaft up/down" installation position, filling and air bleeding must be carried out completely as there is, for example, a danger of dry running. The case drain fluid in the pump housing must be directed to the reservoir via the highest available drain port (\mathbf{L} , $\mathbf{L_1^{2}}$), $\mathbf{L_2^{3}}$)). For combinations of multiple units, the case drain fluid must be drained off at each pump. If a shared reservoir line is used for this purpose, make sure that the case pressure in each pump is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction line and drain line must flow into the reservoir below the minimum fluid level. The permissible suction height h_{S} results from the overall loss of pressure. However, it must not be higher than $h_{\text{S} \text{ max}}$ = 800 mm. The minimum suction pressure at port **S** must also not fall below 0.8 bar absolute during operation and during cold start.

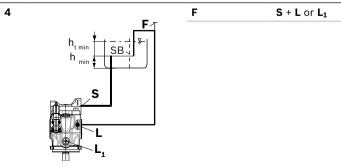
When designing the reservoir, ensure adequate distance between the suction line and the case drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

Note

In certain installation positions, an infl uence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristic curves and changes in response time. For key, see page 63.

- 1) Because complete air bleeding and filling are not possible in this position, the pump should be air bled and filled in a horizontal position before installation.
- 2) For NG10 and NG28 series 52, L₁ is opposite, L must then be connected if necessary.
- 3) Only series 53

Installation position


See the following examples 1 to 12.

Further installation positions are available upon request. Recommended installation position: **1** and **3**

Below-tank installation (standard)

Below-tank installation means the axial piston unit is installed outside of the reservoir below the minimum fluid level.

	Air bleeding	Filling
h _{t min} h _{min} SB1	F	S + L or L ₁
	F	S + L ₁
h _{t min} SB ₇		
	F	S + L or L ₁
h _{t min} SBV		
	h _{t min} h _{min} SB ₂	F

Above-reservoir installation

Above-reservoir installation means the axial piston unit is installed above the minimum fluid level of the reservoir. To prevent the axial piston unit from draining in position 6, the height difference $h_{\text{ES}\;\text{min}}$ must be at least 25 mm. Observe the maximum permissible suction height $h_{\text{S}\;\text{max}}$ = 800 mm.

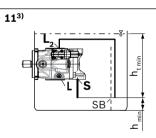
Installation position Air bleeding Filling F L₁ or L 61)2) SR **7**3) L2 81) S or L

For key, see page 63.

- 1) Because complete air bleeding and filling are not possible in this position, the pump should be air bled and filled in a horizontal position before installation.
- 2) For NG10 and NG28 series 52, ${\bf L_1}$ is opposite, ${\bf L}$ must then be connected if necessary.
- 3) Only series 53

A check valve in the case drain line is only permissible in individual cases. Consult us for approval.

Reservoir installation


Inside-reservoir installation is when the axial piston unit is installed in the reservoir below the minimum fluid level. The axial piston unit is completely below the hydraulic fluid. If the minimum fluid level is equal to or below the upper edge of the pump, see chapter "Above-reservoir installation". Axial piston units with electrical components (e.g., electric control, sensors) may not be installed in a reservoir below the fluid level.

Installation position	Air bleeding	Filling
92) Light SB C	Via the highest available port L	Automatically via the open port L or L ₁ due to the position under the hydraulic fluid level

10

Via the highest available port L₁ the open port L,

Automatically via L₁ or S due to the position under the hydraulic fluid level

12

Via the highest available port **L**

Automatically via the open port L, L₁ or S due to the position under the hydraulic fluid level

Key and assembly note

Legend	
F	Filling / air bleeding
S	Suction port
L; L ₁	Reservoir port
SB	Baffle (baffle plate)
h _{t min}	Minimum required immersion depth (200 mm)
\mathbf{h}_{min}	Minimum required distance to reservoir bottom (100 mm)
h _{ES min}	Minimum necessary height needed to protect the axial piston unit from draining (25 mm).
h _{S max}	Maximum permissible suction height (800 mm)

- 1) Because complete air bleeding and filling are not possible in this position, the pump should be air bled and filled in a horizontal position before installation.
- 2) For NG10 and NG28 series 52, L₁ is opposite, L must then be connected if necessary.
- 3) Only series 53

Project planning notes

- ▶ The A10VO pump is designed to be used in open circuits.
- Project planning, installation and commissioning of the axial piston units requires the involvement of skilled personnel.
- ► Before using the axial piston unit, please read the coresponding instruction manual thoroughly and completely. If necessary, request these from Bosch Rexroth.
- ► Before finalizing your design, request a binding installation drawing.
- ▶ The data and notes contained herein must be adhered to.
- Pressure controllers are not backups against pressure overload. A separate pressure relief valve is to be provided in the hydraulic system.
- ► Depending on the operating condition of the axial piston unit (operating pressure, fluid temperature), the characteristic curve may shift.
- ▶ Not all versions of the product are approved for use in a safety function pursuant to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- Working ports:
 - The ports and fastening threads are designed for the specified peak pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service and function ports can only be used to accommodate hydraulic lines.

Safety instructions

- ▶ During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e.g., by wearing protective clothing).
- ▶ Moving parts in control equipment (e.g. valve spools) can, under certain circumstances, get blocked in position as a result of contamination (e.g. impure hydraulic fluid, abrasion, or residual dirt from components). As a result, the flow of hydraulic fluid and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filtering) cannot rule out errors, but can only help minimize risks. The machine/system manufacturer must test whether remedial measures are needed on the machine for the application concerned in order to set the consumer being driven to a safe position (e.g. safe stop) and if necessary to ensure it is properly implemented.

Bosch Rexroth AG

Mobile Applications An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information provided does not release the user from the obligation of independent judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.